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Abstract. Robotic welding automation allows manufacturers to increase quality,
flexibility and reduce costs. However, the costs involved in programming welding
robots for small production runs limits viability for Small and Medium Enter‐
prises to employ arc welding automation. This paper outlines an Automated
Offline Programming framework which can be used to generate robot programs
directly from Computer Aided Design models with minimal human input,
allowing programming costs to be drastically reduced or even eliminated. The
key stages of our approach are presented and a specific implementation for
welding of complex pipe structures is shown. The results demonstrate the feasi‐
bility of our method to enable truly flexible robotic welding automation.
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1 Introduction

Industrial robotic automation is typically the domain of high volume manufacturers with
short cycle times and large batch sizes. The cost of tooling and programming limits the
viability of robotic welding automation for low volume and once-off production. This
paper presents an Automated Offline Programming (AOLP) approach for generating
robotic welding programs directly from Computer Aided Design (CAD) models,
reducing or eliminating programming costs.

Arc welding is a key robot application. 13% of robots sold in 2011 were used in arc
welding applications [1]. Tooling costs for robotic arc welding are similar to those in
manual arc welding, hence the programming costs involved is the key limiting factor
for use in low production volumes. By reducing programming time and costs, the
presented AOLP framework makes automated robotic welding feasible for Small and
Medium Enterprises (SMEs).

There are two primary classifications of robot programming methods: automatic and
manual programming [2]; and online and offline programming [3]. Conventionally
robots use online manual programming (or lead-through programming), in which an
operator uses a teach pendant to guide the robot through the designed welding motions.

These motions are recorded to create the robot program. This approach is simple and
low cost, but requires: significant time, a physical robot, and is limited by the skill of
the operator. Recent extensions to this focus on programming by demonstration, in
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which an operator demonstrates a task to perform which the robot then “learns” using
sensors [4].

In contrast, Offline Programming (OLP) uses a model of the robot, cell and work
piece to allow a user to generate robot programs using a software package without
requiring exclusive access to a physical robot. By taking advantage of software tools
and existing CAD data it is possible to rapidly develop and simulate robot programs.
However, this programming process has many of the same challenges as conventional
programming: it requires a skilled operator, there are challenges translating to a physical
robot, and for some cases the costs can be higher than conventional programming [5].

Automated Offline Programming (AOLP) [5] is an approach which extends OLP by
using algorithms to automate much of the robot programming process. This can drasti‐
cally reduce or even eliminate human effort required for robot programming, making
robot programming viable for low volume applications. It also allows generating
complex motions to access challenging areas, as well as integrating sensing to deal with
part placement inaccuracies.

Fig. 1. The robotic welding cell with two 6-DOF manipulators

This paper presents the AOLP framework tailored specifically for arc welding.
Previous papers have presented individual components in detail, but this paper aims to
cover all the required stages for a full AOLP welding solution. Section 2 outlines the
overall approach and Sects. 2.1 to 2.5 detail each stage. Results from a specific imple‐
mentation are presented in Sect. 3 and conclusions are drawn in Sect. 4.

2 Automated Offline Programming

Automated Offline Programming (AOLP) uses planning algorithms to translate a CAD
model directly into a robotic program with little human intervention. The process, intro‐
duced in [3, 5], is composed of several key stages as illustrated in Fig. 2. For the specific
case of welding, they are:
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(a) 3D CAD Model
During product design, create a 3D CAD model of the parts to weld.

(b) Process Definition
Define the weld paths, orientations and key process parameters.

(c) Process Planning
Generate robot motions to perform the welding operation.

(d) Trajectory Planning
Plan intermediate motions to move between welds and home positions.

(e) Calibration
Use sensing to account for differences between the CAD model and the part.

(f) Post Processing
Optimize motions, and convert to robot code.

Steps (b)–(f) use algorithms to directly generate high quality welding programs with
little or no human intervention. Sections 2.1–2.5 detail approaches to each of these
stages.
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Fig. 2. The Automated Offline Programming (AOLP) process for welding

2.1 Process Definition

The first stage in the AOLP welding process is to define or extract the weld paths and
necessary process parameters. This generates weld paths p(t)→SE(3), where t ∈ [0,1] is
the position along the weld. Several methods have been used to specify weld paths for
CAD models [6]:

• Define weld paths within the CAD application.
• Pass data to an external program using an Application Programming Interface (API).
• Export CAD models in a universal format for processing in an external application.

Weld paths can be defined within the CAD application, such as the system demon‐
strated by Neto et al. [7] which uses line primitives in Autodesk Inventor to define welds.
Reference [8] also used a similar approach to represent welds within the CAD model
which were then extracted using the SolidWorks API. However, this approach relies on
manual design work and is not fully automated. It is also difficult to deal with complex
cases such as several curved work pieces joining together.

For direct programming, it is necessary to use semi-automated or fully automated
methods to extract weld paths from CAD models. Semi-automated methods such as [9]
prompt the user to select two plates to join and a straight weld is then generated. For a
fully automated system, it is necessary to identify both straight and curved welds with
no user interaction.
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Automated Weld Path Generation. A fully automated system to identify welds
between pairs of triangular meshes was presented in [10]. This is an ideal solution as it
allows weld paths and normal to be automatically determined from complex and irreg‐
ular geometry such as the example shown in Fig. 7. This method relies on repeatedly
expanding and intersecting triangular meshes of each part, allowing both the weld paths
and wire directions to be identified directly from a CAD model with no special meta-
data to define the weld.

2.2 Process Planning

The primary phase in the AOLP process is the generation of the robot motions to achieve
each weld defined in Sect. 2.1. The weld path is only partially constrained, and there is
freedom to tilt and rotate the torch to achieve a motion. In addition, the torch angles and
workpiece position must be optimized to achieve a high-quality weld. This can be formu‐
lated as a task space (T-space) motion planning problem as shown in Table 1. T-space
planning formulates the planning problem derived from the task being performed, as well
as including task-specific constraints.

Table 1. T-space parameters describing the weld planning problem

Parameter Description
t Position along the weld path, t ∈ [0,1]
Rx,y,z Rotation around the weld torch x, y and z axes. This corresponds to push, tilt

and roll angles
ctwd Contact Tip to Work Distance (CTWD)
configuration Robot configuration representing which Inverse Kinematics (IK) solution to

use
positioner Configuration of any external robot or work piece positioners

There are several methods to solve T-space motion planning problems. A common
method is to discretize the search space and use an algorithm such as A* [11] to generate
a resolution-optimal solution. This approach does not work when the problem dimen‐
sionality is very high, as is common in robotic welding applications. A simple sampling-
based planner implementation cannot be used as the probability of generating configu‐
ration space (C-space) samples which satisfy task constraints is very low.

Yao and Gupta [12] describe ATACE, which samples directly in T-space before
converting samples to C-space. Shkolnik and Tedrake [13] sample T-space using a
Rapidly exploring Random Tree, and then use a controller to grow the tree in C-space.
Alternative, approaches such as [12] can repair samples to satisfy task constraints. Other
algorithms include CBiRRT2 [14] and tangent-space sampling [15].

Positioner Configuration. One of the key T-space parameters to optimize weld quality
is the configuration of the workpiece positioner. Positioners can take many forms, from
rotary tables to full 6-DOF robots. Typically, each DOF in the positioner is discretized
and candidate configurations are ranked using a cost function. This function is composed
of several weighted weld metrics such as:
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• Path incline or decline angle.
• Parent geometry profile angle. -Welding torch angle.

This cost function is typically adapted for the welding process being used. For
example, with a typical Gas Metal Arc Welding (GMAW) process, the function would
balance minimizing incline, maximizing parent geometry profile angle and minimizing
welding torch angles (i.e. weld torch pointing down).

(a) (b)

Fig. 3. Inherent redundancy in the (a) Rz and (b) positioner T-space parameters as shown in
Table 1 [8]

Task Space Weld Planning. For welding, the T-space planning problem is formulated
based on the weld path and weld gun angles, as shown in Table 1.

For a welding cell with a standard 6-DOF robotic manipulator and static work piece,
the T-space planning problem also has six dimensions. The addition of any external
robot axes or work piece positioners increases the problem dimensionality. As in [8] we
use an A* [11] graph search to solve this problem while maintaining resolution optimal
weld quality. However, the T-space problem is of sufficiently high dimensionality that
a straightforward graph search is not possible.

In order to reduce the A* search to a tractable problem, the inherent redundancy of
the T-space parameters is exploited as shown in Fig. 3. As can be seen, when changing
the Rz torch roll angle, the position of the weld nozzle does not actually change. Another
example is changing the positioner parameter: when this changes, the position of the
entire weld torch does not change. This allows us to decouple the problem into smaller
sub-problems which can be sequentially solved as in [8].

2.3 Trajectory Planning

Once the process motions have been generated, collision-free intermediate trajectories
between home positions can be planned. In contrast to the T-space planning problem in
Sect. 2.2, intermediate trajectories are planned in the robot’s configuration space (C-
space). A single robot configuration q is a vector of joint angles describing the robot’s
position, and the C-space C is the space encompassing all possible configurations. A
portion Cobs ⊆ C is occupied by obstacles, with the free space being defined as
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Cfree = C − Cobs. Given a start configuration qstart and goal qgoal, trajectory planning
requires finding a path τ: [0,1]→Cfree such τ(0) = qstart, τ(1) = qgoal and any additional
constraints are satisfied.

Sampling Based Planning (SBP) uses a graph structure of individual samples drawn
from C to approximate the connectivity of the free space. This removes the need to
explicitly represent Cfree and Cobs, allowing for effective motion planning for high-DOF
robots such as industrial robotic manipulators. The two most common SBPs are the
Probabilistic Roadmap Method (PRM) [16] and Rapidly-exploring Random Trees
(RRT) [17]. A PRM is a two stage multi-query planner: in the first stage a roadmap of
random configurations connected by paths is generated and in the second stage this is
queried to see if qstart and qgoal can be connected. In contrast, RRTs are single query
planners which grow a tree from the start configuration qstart until qgoal is reached.

For an AOLP system, multi-query PRMs [16] are generally the most applicable
approach as they benefit from repeated planning queries within the same work cell
environment. An example roadmap generated within a manufacturing cell is shown in
Fig. 4. There are many PRM variants such as Lazy-PRM [18] which can offer improved
performance characteristics. The main challenge of using a PRM for automated welding
is the need to plan into narrow passages, as the weld torch must be placed close to the
work piece inside challenging areas. This can be addressed using sampling schemes
suited to this scenario [19–21].

Fig. 4. A roadmap generated during trajectory planning [8]

2.4 Calibration

Calibration is necessary to adapt the weld path from the nominal CAD position to the
“as-built” part position. The nominal weld path p(t)→SE(3) generated in Sect. 2.1 will
differ from the “as-built” weld path b(t) = p(t) + h(t) where h(t) is the error function
modelling the difference between the CAD model, the workpiece and robot pose error.
Once the error is known the weld path can be adjusted during execution as shown in
Fig. 5.
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Fig. 5. A nominal CAD weld path p(t), “as-built” path b(t) and the measured error function h(t)
used for calibration

h(t) is evaluated using sensors integrated in the robotic package. There are many
commercially available solutions. Two common approaches are touch sensing, where
the power source detects continuity between the welding system and the workpiece; and
laser profilometry, where a 2D profile is evaluated by a dedicated processing system for
a particular feature (such as a plane, corner, edge or bound). Other methods include
structured light and computer vision [22]. Once the arc is established, seam tracking
techniques [23, 24] can also be used.

Often it is not practical to continuously model h(t), so discrete sensing actions are
used to sample h(t) and the intermediate values are linearly interpolated.

Also it is not always necessary to model all components of SE(3) for the correction –
this is often the case for corrections in the welding direction where an error will not lead to
poor weld quality (with the exception of the start or end of a weld).

The online measurement of h(t) involves the creation of sensing actions to be
executed on the robotic system. These actions work by identifying feature positions and
comparing them to known reference features from the CAD model. Creating these
actions automatically involves careful consideration of the parent geometry, the effect
of errors, and the sensing method used. We utilize a tiered search algorithm to determine
the optimal robot actions to calibrate the weld position where sensing features are eval‐
uated from most to least optimal:

1. Weld seam
2. Features on the parent parts of the weld
3. Nearby weld seams
4. Nearby part features

An important aspect of the calibration process is to evaluate the information gathered
by sensing such that the weld can be calibrated in SE(3). For example, additional infor‐
mation is required perpendicular to the welding direction to calibrate the weld start
position.

Sensing motions and actions are planned as part of the AOLP process. These motions
can be formulated as a T-space problem similar to Sect. 2.2.

Touch Sensing. Touch sensing is a common feature built into industrial welding power
sources. It involves moving the robot along a linear path until an output from the power
source indicates that continuity between the welding wire and the workpiece has been
detected. Once continuity is detected, the robot motion is stopped and the position is
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recorded. Touch sensing requires several actions as each sensing operation provides a
1D calibration property.

Laser Profilometry. Laser profilometry typically employs a structured light mecha‐
nism and a camera to detect a 2D profile of the target. Common commercially available
systems also provide a processing system to evaluate the profile and convert the raw
scan data into simple metrics about the profile’s type and position. Laser profilometry
provides a 2D calibration property.

2.5 Post Processing

The final stage in the AOLP process involves sequencing, optimizing the generated
motions and converting the process and trajectory plans to robot code. Sequencing can
be based on minimizing cycle time, distributing heat input to minimize distortion, or
other factors (Fig. 6).

Fig. 6. An end-effector trajectory before (left) and after (right) optimisation [8]

Typical sampling-based planners, as outlined in Sect. 2.3, often produce sub-optimal
paths and benefit from post-process optimization [25]. There are several techniques for
post-process optimization which short-cut segments of the generated path. References
[26, 27] attempt to skip points in the generated path to remove redundant motions.
Sánchez and Latombe [28] attempt to skip entire randomly selected portions of the path
at a time. Guernane et al. [29] presented a method which skips between the midpoints
of path points and Hsu et al. [30] uses a similar technique which adds points to the path.
Geraerts et al. [31] developed the partial shortcut method which applies these operations
on one DOF at a time, and Polden et al. [25] extended this specifically for industrial
robots to guide optimization towards DOFs which deviate the most from an ideal path.

Alternatively, planning variants can be used which embed optimization in the plan‐
ning process. Algorithm variants such as PRM* and RRT* [32] converge to an optimal
solution and can be used to minimize path length or other criteria during the trajectory
planning phase. Therefore, post-process optimization may not be required.

As in [8] a path optimization procedure can also be used to generate motions between
welds. A path between subsequent welds can be created by joining the path from the
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end of the first weld to the home position and the path from the home position to the
start of the second weld. The optimization algorithm can then be used to shorten this
non-optimal path. This allows acceptable quality intermediate motions to be generated
without invoking a full planning algorithm as in Sect. 2.3.

The final step is to convert the generated process and trajectory motions into robot
code and insert the relevant welding control commands. Common targets include ABB’s
RAPID language [33] or Kuka’s KRL [34]. The conversion process from generated
motions to a robot control program is generally straightforward.

3 Results

We present an AOLP implementation to weld pipe and plate geometry. This imple‐
mentation utilizes two 6-DOF industrial robotic manipulators as shown in Fig. 1. An
ABB IRB 4400 is used for workpiece positioning, and an ABB IRB 1400 is used for
welding. Calibration sensing utilizes a ServoRobot DIGI-I/P laser profilometry scanner.
For these results we present three scenarios as shown in Fig. 7:

1. a simple pipe-pipe structure,
2. a more complex pipe-plate structure, and
3. a complex multi-pipe node structure.

(a) Pipe-pipe (b) Pipe-plate (c) Pipe node

Fig. 7. Generated weld paths for each scenario

The first stage of the AOLP process is to generate the weld paths. The weld paths
are then converted to robot motions using the following steps:

1. Workpiece positioning
2. Planning the weld path motion
3. Planning the sensing actions and motions

As the positioner is a 6-DOF robot we cannot naively sample all DOFs to evaluate
workpiece positioner configurations. Instead we first rank combinations of (Rx, Ry)
angles and then search within (Rz, x, y, z) for the best solution. Many of the welds in
these scenarios are made up of complex curves where the weld seams cannot be meas‐
ured directly for calibration purposes. Instead, the axes of the parent pipe objects are
measured and used to create the error function h(f). Welds are sequenced to ensure that
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weld starts are not placed on top of existing welds to improve the visual appearance of
the fabrication.

The three scenarios shown in Fig. 7 were each planned on a MacBook Pro with a
Core i7 CPU and 16 GB RAM. The overall planning time and a breakdown of the time
taken for each stage is shown in Table 2. Each of the generated programs was then
executed in the robotic welding work cell, resulting in high quality welds as shown in
Fig. 8.

Table 2. Planning results for the presented AOLP implementation

Pipe-pipe Pipe-plate Multi-pipe node
No. of bodies 2 4 5
No. of welds 4 11 17
Overall time (s) 153 711 793
Path generation (s) 0.539 1.22 2.22
Process planning (s) 104 506 595
Trajectory planning (s) 40.3 84.3 112
Post processing (s) 8.47 120 83.4

(a) Pipe-pipe (b) Pipe-plate (c) Pipe node

Fig. 8. Resulting welds for each scenario

The time taken to generate these programs is relatively short. The welding program
for even the most scenario we tested was generated in under 15 min. This supports the
applicability of this weld program generation for complex structures. The breakdown
of planning time required for each stage in the AOLP process are as expected. Process
planning, which includes generating the weld path motions and calibration positions,
requires the majority of the processing time. We consider this to be an artifact of our
optimization approach which uses a greedy search algorithm to maximize the final weld
quality.

4 Conclusion

Automated Offline Programming enables truly flexible robotic welding capability. We
listed the key steps of an AOLP process and explored the underlying technologies and
algorithms. We then detailed our specific implementation that automatically generates
weld programs for a wide range of simple and complex geometries, and tested the
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resulting programs on a robotic welding setup. Our results validate the approach and
show the ability of this programming method to produce high quality welding results
without human programming effort.

Future developments include applying automated programming techniques to more
complex tasks such as integrated pick-and-place, assembly and welding. A limitation
of the current approach is the requirement for a CAD model – another extension is to
integrate part sensing so a CAD model is not required.
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