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Abstract A master welder uses his sensory perceptions to evaluate the process and
connect them with his/her knowledge base to take the necessary corrective mea-
sures with his/her acquired skills to make a good weld. All these actions must take
place in real time. Success depends on intuition and skills, and the procedure is
labor-intensive and frequently unreliable. The solution is intelligent weld manu-
facturing. The ultimate goal of intelligent weld manufacturing would involve
sensing and control of heat source position, weld temperature, weld penetration,
defect formation and ultimately control of microstructure and properties. This
involves a solution to a problem (welding) with many highly coupled and nonlinear
variables. The trend is to use an emerging tool known as intelligent control. This
approach enables the user to choose a desirable end factor such as properties, defect
control, or productivity to derive the selection of process parameters such as cur-
rent, voltage, or speed to provide for appropriate control of the process. Important
elements of intelligent manufacturing are sensing and control theory and design,
process modeling, and artificial intelligence. Significant progress has been made in
all these areas. Integrated computational welding engineering (ICWE) is an
emerging field that will aid in the realization of intelligent weld manufacturing. The
paper will discuss the progress in process modeling, microstructure, properties, and
process control and automation and the importance of ICWE. Also, control and
automation strategies for friction stir welding will be discussed.
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1 Introduction

Welding is a multibillion dollar industry used extensively in the construction of
buildings, bridges, aircraft, ships, automobiles, and electronics. In recent years
welding has emerged as a multidisciplinary activity that involves a large number of
variables and that requires knowledge of basic science and engineering. In the last
four decades, significant advances have been made in taking welding from a job
shop technology to a highly automated, computer-oriented technology [1–7]. To
meet the demands of quality and productivity is a continuing challenge. This is
where intelligent weld manufacturing comes into play. Worldwide significant
amount of work is being done in intelligent weld manufacturing [8].

“Intelligent manufacturing is real-time-based optimization through the entire
value chain.” Welding is ideally suited for intelligent manufacturing. It involves
sensing and control of the heat source, position, weld defect formation, and ulti-
mately microstructure and properties. This involves solution to a problem with
many highly coupled and nonlinear variables in welding. The trend is to use
intelligent control. This enables the user to choose a desired end factor such as
penetration and productivity to drive the selection of process parameters such as
current, voltage, and speed to provide for appropriate control of the process. In
other words, intelligent welding aims at controlling for microstructure properties
and performance of the welded parts. Chen has discussed the frame work for the
science and technology for intelligent weld manufacturing [9]. Important elements
of intelligent weld manufacturing are sensing and control design, process modeling,
and artificial intelligence. The ultimate goal of intelligent weld manufacturing is to
produce high-quality welds with increased productivity. To achieve this, it is
necessary to have a thorough knowledge and understanding of four key elements:
(1) process and process modeling, (2) microstructure, (3) properties, and (4) process
control and automation. Mathematical modeling and simulation are integral parts of
these elements. Details about the four elements are found in the published literature
[10, 11]. Figure 1 shows the importance and integration of these elements. A wealth
of information is available about these four elements in the Proceedings of a series
of two International Conferences, namely, Trends in Welding Research and
Mathematical Modeling of Weldability, held in recent years [10, 11]. The pro-
ceedings of these conferences contain a wealth of knowledge and information on
intelligent control and automation. Although significant advances are being made in
all these four areas, to integrate them successfully for a process that is highly
coupled with a large number of variables is a major challenge. An approach to
solving this problem is integrated computational welding engineering (ICWE).
ICWE is an approach to design and produce welds in materials and by methods
linking process models. ICWE is a major part of intelligent weld manufacturing.
Another emerging field is integrated computational materials engineering (ICME).
Both ICWE and ICME are engineering disciplines that speed up process devel-
opment by integrating materials design, fabrication, and performance using com-
putational process.
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The paper will address the role of ICWE and ICME models in advanced
intelligent weld manufacturing. It will address the progress made in various aspects
of ICWE and ICME, most importantly in welding processes, microstructure and
properties, and process control and automation. Current state-of-the-art of process
modeling, microstructure and properties modeling, integration of various models,
and sensing and control will be discussed. The paper will also address control and
automation strategies for friction stir welding.

2 Process Modeling

In this section, recent advances in processes and process modeling will be
described.

2.1 Weld Pool Dynamics and Geometry

Two of the most important parameters to control in automation are penetration and
weld geometry. During welding, as the heat source interacts with the metal, several
physical processes occur (e.g., melting, evaporation of elements, solution of gases,
solidification, phase transformation residual stresses). It is important to understand

Fig. 1 Integration of process, microstructure, properties and process control and automation [10]
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the physical processes and their interactions to develop ICWE and intelligent weld
manufacturing. Direct observation of the process is difficult, time consuming, and
expensive because of the complexities, the large number of variables, and the
presence of plasma. A solution is to model and simulate the process using equations
of conservation of mass, momentum, and energy with appropriate boundary
conditions.

Significant advances have been made in calculating the weld pool geometry [12–
27] since the earlier Rosenthal analysis of heat flow in welds [28, 29], which was an
analytical and a conduction model. Weld pool heat flow and fluid flow are rec-
ognized to be critical in the development of the shape and size of the weld pool and
the macrostructure and microstructure of the weld. Current models address coupled
conduction and convection problems to predict weld pool geometry. Of the various
heat transfer models, the ones with convection play a major role in determining
weld pool geometry and penetration. Convection in the weld pool is driven by
surface tension, buoyancy, and electromagnetic forces [15, 17, 18, 30–36]. In
addition, aerodynamic drag force due to plasma stream is also thought to be a factor
[36]. Various forces are shown schematically in Fig. 2 [36]; convection due to
surface tension is the dominant force contributing to fluid flow in the weld pool.
The presence of a significant temperature gradient on the weld pool surface leads to
spatial gradient of surface tension, also known as Marangoni stress, which con-
tributes to convection in the weld pool. Buoyancy effects due to spatial variation of

Fig. 2 Flow filed in the liquid pool induced by the four forces during arc welding (PA, PB and PC
are electromagnetic force induced pressure; qA and qB are buoyancy force; rA and rB are surface
tension) [36]
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density of the liquid as a function of temperature and composition can provide
convective flow. Electromagnetic forces are due to the divergent path of the current
and the magnetic field that the current generates.

The reason that a shallow or deep penetration weld forms depends on the
temperature coefficient of surface tension (dc/dT). For pure metals and alloys,
dc/dT is negative (Fig. 3). In a stationary arc weld, the highest temperature is in the
middle of the weld pool. Therefore, the hot liquid flows outward, resulting in a
shallow weld pool (Fig. 3). In the presence of surface-active elements such as
phosphorous and sulfur and sometimes oxygen, the dc/dT is positive, resulting in
the flow of the hot liquid inward, driving the hot liquid downward, and resulting in
a deep weld pool. Figure 4 shows flow fields for pure iron resulting in a shallow
weld pool and a deeper penetration with addition of oxygen. Depending on the
interplay between various forms of driving force, the convective flow can be simple
recirculation or a complex pattern with several convective cells (Fig. 4) [28, 36–
38].

In the past three decades, most of the studies have concentrated on convective
heat transfer, in particular, on the effect of spatial variation of surface tension on

Fig. 3 Different convective
flow pattern produced by
different temperature
coefficient of surface tension
[62]
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weld penetration. For simplicity, most of the earlier models assumed stationary arc
with a rigid weld pool surface. Recently, the models have been refined to incor-
porate realistic welding conditions such as deformable weld pool surface and
moving heat source. In the last two decades, we have seen an enormous growth in
understanding the physical process of welding. This is in part due to the speed and
availability of computers. The introduction of massively parallel computers is
expected to solve complex problems posed by intelligent weld manufacturing.

DebRoy et al. [39] have developed a computerized analysis for predicting heat
transfer, phase changes, and fluid flow. They describe the use of modeling of the
mushy zone using an ethology-porosity technique [39]. Figure 5 shows the com-
puted convective flow of the weld part during arc welding. The color represents the
temperature (in degrees kelvin), and the dotted lines show the liquid flow field. The
two large loops shown near the surface of the pool are from Marangoni flow; the
other loops below are due to electromagnetic effects [40].

The variable penetration during welding of different batches of a commercial
alloy within a prescribed range has received considerable attention. Studies [39]
have shown that knowledge of the interfacial phenomenon is the key for under-
standing and controlling weld penetration [17, 18, 28, 35–40]. Often the penetration

Fig. 4 Velocity and temperature fields for two different cases: a for pure iron and b for
Fe-0.03 wt% oxygen [38]

Fig. 5 Computed flow fields
in a GTA weld pool. The
color represents the
temperature in the weld pool,
and the dotted lines represent
the liquid flow pattern. Two
loops on the surface are from
Marangoni flow (courtesy of
Prof. DebRoy, Penn State
University) (Color figure
online)
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is determined by the concentration of surface-active elements in the alloy [41–43].
This can affect the temperature/coefficient of surface tension and the resulting
direction of fluid flow [34].

Weld penetration is an important consideration for weld automation. It is one of
the parameters that need to be incorporated in the models. Weld penetration has
been determined extensively by the physical feature of the weld pool such as weld
pool oscillation and geometry [44–46].

2.2 Vaporization and Solution of Gas

During welding, the surface temperature of the weld pool is higher than the liquidus
temperature of the alloy. In a high-energy-density process such as laser and electron
beam welding, the temperature would exceed the boiling point of the alloy [47, 48].
Consequently, vaporization of the alloying elements can occur, changing the
composition and hence changing the microstructure and the properties of the weld.
DebRoy et al. have developed a computer model to describe the vaporization of the
elements in a weld [49–51].

During welding, gases such as hydrogen, oxygen, and nitrogen dissolve in the
liquid pool, causing pinholes and porosity. They also react with elements in the
weld pool to form oxide and nitride inclusions [52]. Hydrogen causes hydrogen
embrittlement, and nitrogen increases the yield strength and reduces ductility.
Realistic modeling of hydrogen absorption and diffusion and their effects on
hydrogen embrittlement is a challenge.

2.3 Artificial Neural Network Modeling

Two of the most important weld features in automated welding are weld pool
geometry and penetration. Over the past three decades, several computational
models have been developed for weld pool shape and penetration. The models have
become more complex and sophisticated and require greater computational power.
Although they are excellent tools for understanding the physical processes in
welding, they are not available for the end users. An alternate process is the use of
artificial neural network (ANN) [53]. A publication by Bhadeshia highlights the
application of neural network in materials science [54]. Neural network models can
be sophisticated, but they are limited to the experimental datasets on which they are
based.

ANN has been used to solve problems in many areas of science and technology.
The neural networks are modeled after the learning process in the human brain.
Such models are empirically based and are capable of providing results rapidly. An
example is the prediction of weld pool shape in a hybrid laser/arc process for which
the physics of the process is not well known. Numerical models exist for laser or arc
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welding processes. Other examples include prediction of the weld joint penetration
based on the shape of the weld pool geometry [55] and real-time control of weld
penetration based on real-time measurement of the weld pool geometry [56]. It is
difficult to accurately model the hybrid process without knowing the physics of the
process [53]. Figure 6 shows neural network architecture for laser/arc hybrid pro-
cess; Fig. 7 shows prediction of an ANN model and the weld metal. The agreement
is excellent. ANN modeling has been used for a wide variety of investigations [54,
57–60]. Sterjovski et al. have used ANNs for modeling the mechanical properties of
steels in various applications [58] and for predicting diffusible hydrogen control and
cracking susceptible in flux-covered arc welds [59]. Vitek et al. [60] have devel-
oped the Oak Ridge Ferrite Number (ORFN), a new model for predicting ferrite
content in stainless steel welds. For the first time, ferrite content is predicted
quantitatively as a function of alloy composition and cooling rate. The model is
based on a neural network analysis of existing data supplemented with newly
generated data.

Fig. 6 Neural network
architecture for predicting
weld pool shape and
penetration [53]

Fig. 7 Comparison of weld
cross section predicted by
neural network model and the
actual weld pool [53]
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3 Microstructure

As a welding heat source interacts with metal, three distinct regions can be iden-
tified, namely, fusion zone (FZ), heat affected zone (HAZ), and the base material
(BM) (Fig. 8). The microstructural characteristics of the three regions control the
properties and performance of the weld. A weldment is often the weakest link in the
structure. During welding, various physical processes such as thermochemical
reactions in the liquid, solidification, and solid-state transformation that occur in the
weld metal control the microstructural development in the weld. Some fundamental
knowledge of the effect of these physical processes on the microstructural devel-
opment in the weld metal already exists. A review by Babu [61] examines various
models for the development of microstructure in weldments. He analyzes the phase
transformation in metals and alloys due to the weld thermal cycle experience during
welding. The first event to occur when the weld pool cools is liquid transforming to
solid and solid subsequently transforming to single-phase or multiple-phase
structures through a solid-state reaction. The same is true of the HAZ except there is
no melting in the HAZ. All these events are analyzed using computational ther-
modynamics (CT) models and computational kinetics (CK) models that relate to
free energy of phases. The stability of the phases depends on the free energy of
phases. Phases with high free energy are unstable; phases with low free energy are
stable. The rate of phase change is related to diffusion and nucleation rate within the
parent phase that leads to the product phase. However, a generalized integrated
model encompassing our current understanding of the evaluation of microstructure
is just emerging. Such models are needed in the design and successful development
of intelligent weld manufacturing.

Most of our knowledge about weld metal solidification is derived from the
extension of the knowledge of freezing of castings and single crystals in lower
thermal gradients and at slower growth rates [62]. However, various physical
processes that occur during the interaction of the heat source with the metal add a

Fig. 8 Schematic illustration
of interaction of heat source
with metal and three regions
of the weldment, namely FZ,
HAZ and BM

Intelligent Weld Manufacturing: Role of Integrated … 11



new dimension to our understanding of weld metal solidification. Conventional
theories of solidification over a broad range of conditions can be extended to
understand weld pool solidification. In certain cases, because of rapid cooling rate
effects, it is not unusual to observe nonequilibrium phases. Recent developments in
the application of computational thermodynamics and kinetic models, studies of
single-crystal welds and advanced characterization techniques have enhanced our
understanding of weld pool solidification behavior. Advanced in situ characteri-
zation techniques such as synchrotron and neutron sources have enhanced our
understanding of phase formation and formation of nonequilibrium phases [63, 64].
Other important factors are the dynamics of weld pool development and steady state
geometry. Weld pool shape is important in the development of grain structure and
the dendrite grain selection process [62].

Several fundamental aspects of solidification processes (nucleation, epitaxial
growth, the growth selection process, growth kinetics, and microsegregation) must
be understood to develop a basic model for solidification microstructure. In the FZ,
the liquid metal transforms to solid. The size and shape of the grains, the distri-
bution of inclusions, and the presence of defects such as hot cracks are controlled
by the solidification behavior. Unlike the solidification of ingots and casting,
solidification of a weld occurs without a nucleation barrier. No significant under-
cooling is required for the formation of the solid. Solidification occurs sponta-
neously by epitaxial growth on the partially melted grains.

Solidification microstructures in welds are often difficult to interpret and are
commonly analyzed with the help of classical theories of nucleation and growth
[62]. The development of microstructural features (morphology) of the solid in the
weld is controlled by the shape of the solid/liquid interface and its stability. Stability
of the interface is determined by the constitution and thermal conditions that exist at
the interface. Theories have been developed for interface stability for equilibrium
conditions at the interface for normal solidification or under extreme nonequilib-
rium conditions prevalent during rapid solidification [65, 66]. These theories can be
extended to weld pool solidification. The parameters that determine the solidifi-
cation microstructures in contrast are growth rate (R), thermal gradient (G) and
undercooling (DT). It is well known that temperature gradient and growth rate are
important in the combined form G•R or G/R. Depending on the conditions, growth
of the solid can be planar, cellular, or dendritic. A dendrite isolated from the liquid
is shown in Fig. 9 [67]. Weld metal grain structure is predominantly determined by
the base metal grain structure [68]. Crystallographic effects and welding conditions
have been found to influence this grain structure. Often the grains during the weld
pool solidification tend to grow along a crystallographic direction that is easy
growth direction. For cubic metals the easy growth directions are <100>.
Conditions for growth are optimal when one of the easy growth directions coincides
with the heat flow direction. Therefore, during welding among the randomly ori-
ented grains in the polycrystalline base metal, those that are favorably oriented will
continue to grow. Unfortunately for the unfavorably oriented grains, the growth will
terminate, thus leading to a grain growth selection process. This grain anisotropy
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was clearly demonstrated by the work of Rappaz and David using a Fe-Ni-Cr
single-crystal weld [69].

Another significant aspect of weld pool solidification is solute redistribution.
During welding, the extensive solute redistribution that occurs in the weld pool results
in segregation that can adversely affect weldability, microstructure, and properties.
Only recently some attention is being given to this important aspect of weld pool
solidification [70–73]. A great deal of work needs to be done in this area. Availability
of software packages to calculate multicomponent phase diagrams will make it easier
to determine models for solute redistribution in multicomponent alloys.

In most of the cases, both the weld metal and the HAZ go through a solid-state
transformation. The transformation and the resulting microstructures control the
properties. Hence modeling of solid-state transformations in the weld is important
to developing an integrated model [61]. In addition to phase transformation in the
weldment, an integrated model should address grain growth, precipitations,
coarsening, and solute redistribution. The transformations can be grouped in four
classes: (1) phase changes involving diffusional processes, (2) solid-state processes
involving grain growth, (3) phase changes involving displacement transformation,
and (4) phase changes such as spinodal decompositions. The driving force for grain
growth and coarsening relates to minimization of interfacial energy. Analytical
models and Monte-Carlo simulations are routinely carried out to analyze these
phenomena [62, 72, 73].

In most of the alloy systems, the development of microstructure depends on a
series of events. In the case of low-alloy steels, the sequences of events that occur
are shown in Fig. 10 [74]. The model for microstructure development in low-alloy
steel has a number of sub-models recorded on the sequences of events that the weld
metal goes through. In low-alloy steel welds the properties of steel are improved by
maximizing acicular ferrite phase constituent in the microstructure. Although

Fig. 9 Scanning electron
micrograph showing the
features of dendrite structure
that develops in a
nickel-based superalloy [67]
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acicular ferrite forms from austenite, the feasibility of acicular ferrite formation
depends on the presence of inclusions and austenite grain size. The microstructure
evolution is controlled by the sequential formation of various phases as shown in
Fig. 10.

4 Sensors, Intelligent Control, and Automation

Intelligent control and automation are critical elements of ICWE and intelligent weld
manufacturing. As welding technology matures, there will be a steady decrease in
manual welding. For increased accuracy and productivity, future welding operations
will require welding systems with effective adaptive control [75]. Adaptive weld
control is a closed loop approach that relies on measurements of relevant physical
characteristics of the weld pool as the feedback and feedback control algorithms that
decide how to respond to the feedback. Chen has discussed the framework for
research and technology for intelligent weld manufacturing [76, 77]. This includes
computer vision systems for visual feedback sensing, and control, neural network
modeling of the process dynamics, and fuzzy logic and neurons self-leaving learning
for control algorithms of arc welding. The machinery, controls, and materials needed

Fig. 10 The sequential
formation of various phase
changes that occur during
cooling of the low-alloy steel
weldment [74]
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for ICWE are becoming more sophisticated, and the industry to produce them is
growing. The needed sensors, controls, and control software, robots, and automatic
machines are constantly being invented and integrated.

Zhang [78] has provided a comprehensive analysis on why a welding process
should be monitored and how they can be effectively monitored for control. In his
analysis, welding process is treated as a system, argued as a complex system,
analyzed for its uncertainty and the necessity for monitoring and control, and is
artificially decomposed for effective monitoring for control.

Naidu et al. [79] have conducted a survey of automatic control strategies for gas
metal arc welding (GMAW) process. His results provide the status of feedback
control techniques as applied to the GMAW process. Naidu’s report describes the
current state of sensing and control techniques involved such as classical control,
neutral network, fuzzy logic control, adaptive control, and expert systems.

One of the critical elements of adaptive control is sensors. The function of the
sensors is to provide information to the control system to face the necessary
changes to the process to produce parts with highest integrity or at least meeting the
specification despite variations in manufacturing conditions. Significant advances
are being made in the development of sensors [44, 45, 80–86]. The sensors that are
available currently are optical, arc, infrared, acoustic, and ultrasonic. For example,
novel optical sensors have been used for observing welding operations and pro-
cesses. Some have the resolution to view the weld puddle and to clearly see the
solidification substructure (dendrites) formed on the pool surface [84].

For weld penetration, den Ouden [44] was able to correlate the weld pool
oscillation frequency to the weld penetration, and Zhang [45] was able to correlate
the weld pool geometry to the weld penetration. Zhang and his group have
developed a real-time sensing and control device to predict weld penetration based
on weld pool surface reflectivity [85]. In that system, the intensity of the weld pool
surface reflectivity increases as the weld penetration increases. That correlation has
been used to control the quality of the weld.

Seam tracking is a critical element in adaptive welding. Dilthey [84] developed a
“through the arc” sensing device for seam tracking. Cook et al. [86] developed a
seam-tracking control system based on fuzzy logic that tracks seams during pulsed
GMAW. To produce welds with good quality and specified geometry, it is nec-
essary to control the positioning of the welding torch. The method of using the arc
itself as a sensor to sense and control the process is called “through the arc”
tracking. Dilthey designed and implemented a fuzzy logic through-the-arc control
system. The system provides an excellent real-time feedback control system for
welding machine R&D.

Lv et al. [87] have developed a real-time arc length control and weld pool
surface height prediction method by acoustic sensing and segmented self-adaptive
proportional–integral–derivative (PID) controller during pulsed gas tungsten arc
welding (GTAW). The experimental validation has demonstrated the feasibility of
weld process control through the acoustic signals from the welding arc.

Recent developments using infrared sensing have demonstrated its potential for
seam tracking [88]. Although these types of sensors are critical for ultimate process
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control, significant emphasis should be placed on sensors for microstructure and
properties [89]. The ultimate goal of the adaptive control is to regulate the process
to make welds with desired quality, performance, and productivity. The current
trend is to use an emerging tool known as “intelligent control.” This will enable one
to choose a desirable end factor such as property, defect control, or productivity
instead of process parameters such as current, voltage, or speed to provide for
appropriate control of the process.

Another intelligent welding approach is automated pass planning. Welders often
take a fairly long time when they use multipass welding to weld large joints. With
appropriate automated pass planning, the sequence and number of passes can be
optimized, and a welding robot can complete the welding process in a much shorter
time [90].

Significant advances are being made to produce parts intelligently through the
development of sensors and feedback control systems. Neural networks are being
applied for seam tracking. Cook et al. have developed neural network fuzzy logic
control system [75].

Tight coupling of the welding variables imposes limitations on the extent of
control that can be exercised. Cook et al. [86] discuss decoupling of welding
variables for improved automatic control. The process considered includes GTAW,
and GMAW. From the point of view of control, the process or the process variant
that gives the most decoupling of the control parameters is desired because it would
make it easier for control system design and would increase the range of control
over the variable parameters.

Sadek and Drews [91] have investigated intelligent systems for welding process
automation. They evaluated the idea and the implementation of two distinct mul-
tiserver systems for automated manufacturing based on a parallel computing
architecture. They have shown that multiserver systems with distributed architec-
tures offer considerable advantages over standard bus-based systems.

5 Friction Stir Welding

The four key elements to intelligent weld manufacturing that enable the production
of high-quality welds with increased productivity, which again are process and
process modeling, microstructure, properties, and process control and automation,
are not unique to arc welding. Other forms of welding, including welding that
occurs in the solid-state, are guided by these principles as well. One form of
solid-state welding, Friction Stir Welding (FSW), in particular, has garnered
attention from researchers in recent years as a highly dynamic, thermomechanical
process with a rich potential for research endeavors into process modeling, control,
and intelligent welding. FSW is relatively a new welding process developed by
Wayne Thomas at The Welding Institute (TWI), Cambridge, UK [92, 93]. It is a
solid-state process and involves plunging and rotating a tool at the joint to be made
between two plates and traversing along the joint line. Heat generated due to
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friction and plastic deformation softens the workpiece, and flow of the metal brings
about a metallurgical bond. A schematic of the process is shown in Fig. 11. It has
great potential for applications in automotive, aerospace, transportation, and energy
industries. While the fundamental underlying theories and methods for modeling of
the weld process, conducting process development, and performing analysis of
weld properties and microstructure are perhaps not significantly different, specific
techniques are tailored to meet the unique details, conditions, and constraints of the
FSW process. With respect to process modeling, researchers have approached FSW
from both analytical and numerical modeling perspectives. DebRoy and his group
[94–97] have carried out extensive modeling and simulation studies of FSW pro-
cesses related to 3D heat and material flow, torque and power, tool durability, and
dissimilar materials joining. Nunes developed a widely utilized analytical model
[98].

5.1 Control and Automation of FSW

In order to achieve high-quality FSW, a well-understood framework for control and
automation is imperative, and the variables to control and automate the process are
different from that of commercial fusion welding processes. Cook [99, 100] and
Smith [101, 102] were among the first to document the challenges and opportunities
associated with robotic FSW. One of the most important relationships to control is
relative tool-workpiece positioning, i.e. the tool plunge depth. This relationship can

Fig. 11 Schematic of friction stir welding process showing the interaction of the tool with the
material (courtesy of TWI)
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impact weld penetration, defect formation, tool wear, heat generation, and resulting
weld properties. Position control alone can be inadequate due to inconsistent
workpiece dimensions, thermal expansion, robot deflection due to high process
forces, or the welding of complex geometries. For these reasons, force or torque
control in FSW has become important for researchers and manufacturers, with
Longhurst et al. [103–107] contributing significantly in this area, along with many
others [108–110]. Force sensing is thus an important capability as well, with
sensing typically accomplished via load cell [111–114], but Smith et al. [115]
demonstrated that axial force can also be sensed via measurement of robot motor
currents and use of the Jacobian [116] relationship.

5.2 Advanced Sensing and Intelligent FSW

Given the success of ‘through-the-arc’ sensing techniques, ‘through-the-tool’
sensing has been explored in FSW as a means of similarly improving process
characteristics. Smith et al. [117] and De Backer et al. [118] documented problems
in robotic FSW, such as planned-path deviations caused by high forces. While,
Soron et al. [119] and Fleming et al. [120] showed that it is possible to compensate
for deviations based on force sensing (and the use of vision systems is an option too
[118, 121]), novel ‘through-the-tool’ joint tracking capabilities have been suc-
cessfully demonstrated [122–124]. Intelligent FSW describes the correlation of
process output data to welding outcomes to augment the knowledge of researchers
and to improve process efficiency. Boldsaikhan et al. have been significant con-
tributors in this area, with a focus on defect detection and with the use of artificial
neural networks [125–128]. Both Fleming et al. [129] and Gibson et al. [130] used
dimensional reduction techniques to classify weld quality, and defect formation
caused by tool wear has been detected as well [131]. Additional efforts in intelligent
FSW by Bhowmick [132], Jene et al. [133], Britos et al. [134–136], and Burford
et al. [137] have included successful attempts to map process input parameters to
welding outcomes and to correlate force signatures with weld features.

6 Integration of Weld Models

To develop an intelligent weld manufacturing, all the four principal elements
defined by various sub-models must be integrated. Integration of all the four
principal elements mentioned early with sub-models is a very challenging and a
monumental task. This can be achieved but it would be costly and time consuming.
Such integration is essential to the development of intelligent weld manufacturing.
Microstructural evolution in low-alloy steel welds is described as an example.
Evolution of microstructures in a low-alloy weld is not defined by a single event. It
occurs over a range of temperatures. First, as the liquid metal cools, the oxygen in
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the liquid steel reacts with the deoxidizing element in the liquid to form an oxide
inclusion that acts as a nucleating agent for solid d-ferrite. This occurs over a range
of temperatures. Figure 9 shows schematic of continuous cooling transformation
showing the development of weld metal microstructure in low-alloy steels. Upon
cooling, d-ferrite forms and with further cooling the d-ferrite transforms to austenite
and austenite transforms to c-ferrite with different morphologies [84]. These
changes occur sequentially. Physical processes that occur at elevated temperatures,
such as plasma–liquid metal interaction, also affect the ultimate microstructure
obtained. Vaporization and dissolution of gases change the composition of the
liquid. This change in composition that occurs at elevated temperatures affects the
microstructural evolution at lower temperatures. Therefore, an integrated model is
necessary to predict the evolution of microstructure in the low-alloy steel welds.

Integrated process models (thermal models) and microstructure models were
developed in the nineties [89, 91, 138, 139]. However, integration of the integrated
process models with the microstructure models has been achieved only recently [39,
89]. The ability to predict microstructural evolution in weld metal is critical to the
development of intelligent manufacturing. Using a CT and CK framework, Babu
[61] describes the phase stability and rates of change during phase transformation
during a weld thermal cycle. The work carried out at universities, national labo-
ratories, and industrial research organizations in the United States, Europe, and Asia
laid the foundation for developing an integrated thermomechanical and
microstructure models. These developments were summarized by Kirkaldy [138] in
a block diagram (Fig. 12). First the thermal model simulates three-dimensional
(3D) temperature distribution as a function of process parameters and time [61].
The materials model uses thermal cycle data to predict the microstructure evolution
and its effect on transient mechanical properties. The transient change in thermal
and mechanical properties is fed into a finite-element structural model to predict
plastic stress distribution. That information is used for prediction of final properties,
residual stress, and distortion.

Pavlyk et al. [140] modeled the coupling of simulated weld-solidification
microstructure with a macroscopic fluid flow model. Several microstructural sim-
ulation techniques have been developed. Pavlyk et al. used a coupled CA-FDM
technique to simulate weld dendrite structure. They determined solidification
conditions during weld pool solidification. As in the case of accurate physical
models, calculations are carried out at microstructural spatial resolution.

DebRoy et al. [39] carried out weld microstructure calculations from the fun-
damentals of transport phenomena in the arc welding of low-alloy steel welds.
A 3D transient heat and fluid flow model was used to calculate the cooling rates in a
manual GTA weld of different compositions of low-alloy steel welds. The weld
metal composition was used to calculate the time temperature and transformation
(TTT) diagram. These TTT diagrams were converted to continuous cooling
transformation (CCT) diagrams. Cooling rates were coupled to TTT diagram to
obtain CCT diagrams, using which the various microstructural constituents were
determined.

Intelligent Weld Manufacturing: Role of Integrated … 19



Feng et al. [141, 142] developed modeling approach based on ICWE to predict
the mechanical behavior of resistance spot welds. They devised an incrementally
coupled electric-thermal-mechanical-metallurgical model to predict weld
microstructure and properties as a function of steel chemistry and welding condi-
tions. The resulting microstructure and property distribution in a spot weld is then
used in a damage-mechanics-based structural model to predict the strength and
failure of resistance spot welds of advanced high-strength steels for automotive
applications. With such an ICWE-based model, it is possible to realistically sim-
ulate the effects of welding conditions and steel chemistry on the highly hetero-
geneous microstructure distribution (Fig. 13) as well as the deformation, strength,
and failure of the weld as function of microstructure and property distributions
(Fig. 14).

Fig. 12 Block diagram describing integrated weld modeling methodology by Kirkaldy [138]
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Fig. 13 Prediction of weld nugget formation, grain growth, microstructural constituents and
resulting microhardness distribution of a DQSK steel during resistance spot welding [142]

Fig. 14 Predicted failure mode changes of resistance spot weld of a boron steel [142]

Intelligent Weld Manufacturing: Role of Integrated … 21



The ICWE modeling approach taken by Feng et al. is also applicable to arc
welding processes and friction stir welding of steels and aluminum alloys [143,
144]. In the case of a multipass X65 pipeline steel, the coarse grain HAZ exhibited
elevated hardness due to formation of different microstructure constituents in
solid-state phase transformation as a result of grain growth in the coarse grain heat
affected zone (CGHAZ) (Fig. 15). The effect of multiple welding thermal cycles on
the microstructure is also faithfully simulated. Such a model has been used to
optimize the welding process conditions and weld filler metal chemistry to tailor the
weld microstructure and weld residual stress in high-strength steel to eliminate
hydrogen-induced cracking, improve weld fatigue life, and minimize weld distor-
tions [145].

Feng et al. [144] demonstrated that the ICWE model is capable of predicting the
effect of welding process conditions on the microstructure, strength, and defor-
mation and failure of friction stir welded Al6061 alloys. The effect of welding speed
on the temperature, microstructure, strength, and residual stress can be predicted
with high fidelity (Fig. 16). Such a model has been used to guide the welding
process development to improve the properties of friction stir welds.

Doyle and Conrady describe a program for the design, construction, and
demonstration of a prototype programmable automated welding system [146]. The
program, known as the programmable automated welding system (PAWS), was
sponsored by the US Naval Surface Warfare Center. Doyle and Conrady developed
a system with control capabilities to accept, arbitrate, and reach its inputs from
multiple sensors.

Fig. 15 Prediction of microstructure constituents and resulting microhardness distribution in a
X65 pipeline steel [143]

22 S. A. David et al.



7 Conclusion

Intelligent weld manufacturing involves sensing and control of the heat source,
position, weld defect formation, and ultimately microstructure and properties. The
ultimate goal of intelligent weld manufacturing is to produce high-quality welds with
increased productivity. Computational modeling and simulation are key parts of
intelligent weld manufacturing. Computational modeling of weld manufacturing
involves solution to a problem with many highly coupled and nonlinear variables. It
requires a multidisciplinary ICWE modeling approach to cover and connect four
major elements—processes, control and automation,microstructure, and properties—
for intelligent weld manufacturing.

Intelligent weld manufacturing is at a crossroads. We are at a point in the
research at which major breakthroughs are possible to enable us to attain the
ultimate goal of intelligent weld manufacturing. Yet significant challenges remain.
In ICWE, it is now possible to perform a detailed simulation with sufficient fidelity
to achieve design and manufacturing optimization of structural welding of vehicles
or welding of nuclear reactor components. However, this type of weld simulation is

Fig. 16 Integrated multiphysics simulations provide realistic predictions of performance and
failure of Al 6061 friction stir welds [144]
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very time consuming with today’s computers. It often takes weeks or months to
perform such a detailed simulation. Research and development to utilize
high-performance computing systems would be a potential direction to drastically
reduce the computational time (by 103 or more) for intelligent weld manufacturing.
Artificial intelligence and deep machine learning would be another potential solu-
tion to integrate ICWE into intelligent weld manufacturing.
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