
Time-Optimal Path Planning
for Dual-Welding Robots Based
on Intelligent Optimization Strategy

Xuewu Wang, Bin Tang, Yixin Yan and Xingsheng Gu

Abstract Dual-welding robots are widely used with the industry development, and
dual-welding robots usually have to deal with a large number of weld joints. In this
condition, traditional manual teaching method is time-consuming and inefficient. In
this paper, an intelligent optimization strategy is proposed to realize time-optimal
path planning for dual-welding robots. First, the welding robot path optimization
problem is presented. Then, good diversity and convergence velocity of discrete
group competition particle swarm optimization (GC-PSO) algorithm are tested.
Compared with particle swarm optimization (PSO), genetic particle swarm opti-
mization (GPSO) and chaos particle swarm optimization (CPSO) algorithms,
GC-PSO algorithm shows its better optimization effectiveness. In addition, a
method of collision detection and obstacle avoidance is given. At last, an intelligent
optimization strategy is applied to time-optimal path planning for dual-welding
robots, and the global optimal result can be obtained quickly. Simulation results
show that the intelligent path planning strategy is effective and can be used for
welding robot path optimization.

Keywords Particle swarm optimization (PSO) � Group competition
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1 Introduction

Welding robot is widely used in industrial production process. Welding robot path
planning mostly relies on the experience of engineers. This method is not only
time-consuming and inefficient, but also difficult to find the desired welding path.
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Intelligent optimization algorithm provides a convenient and quick method for the
welding robot path planning. Welding robot path optimization was simplified as the
traveling salesman problem (TSP) problem and the path length was minimized
based on double-global optimal particle swarm optimization (PSO) algorithm [1].
In [2], task sequencing and path planning in remote laser welding were studied
based on TSP and meta-heuristic algorithm. The energy consumption and cycle
time were optimized using restarted simulated annealing algorithm [3].

As widely used intelligent optimization algorithm, PSO is used to solve path
planning problem. PSO [4] was first proposed by Kennedy and Eberhart in 1995.
PSO algorithm has many advantages, such as simple structure, fast convergence
speed and easy implementation. However, PSO has a disadvantage: when the
optimized problem is complex, the dimension is high or there are a lot of local
optimal values in the independent variables. In order to solve the premature
problem of PSO algorithm and accelerate the convergence rate of the algorithm,
many improvements were conducted. The first kind of improvement mostly aims at
the PSO parameters, such as learning factor and inertia weight. In [5], a particle
swarm algorithm with dynamic inertia weight adjustment was proposed to balance
the global and local search ability of PSO. However, this improvement is largely
dependent on the choice of random factors. The improvement of the position and
velocity of PSO belongs to the second category. In [6], a position-weighted PSO
algorithm was proposed to increase the determinacy and directionality of the par-
ticle searching for the optimal value. However, the improved method limits the
search range and reduces the convergence rate of the particle. The third category is
local search PSO algorithm based on the global optimal particle [7], such as chaos
particle swarm optimization (CPSO) algorithm. In [8], the chaos was integrated into
the motion of the particle, and the probability of falling into the local optimum was
decreased. However, the algorithm complexity was increased and the convergence
rate was reduced. The fourth category is based on the fusion of different intelligent
optimization algorithms, such as genetic particle swarm optimization (GPSO)
algorithm [9]. Incorporating the updating strategy into the PSO algorithm is the fifth
category [10]. Improved PSO algorithm shows its advantages, such as fast rapid
convergence and global optimization. Therefore, an improved PSO algorithm based
on grouping and competition strategy is proposed to realize the welding robot path
optimization.

Welding robot path optimization problem is described in Sect. 2. Group com-
petition particle swarm optimization (GC-PSO) algorithm is presented in Sect. 3,
and its discretization is also given. Then, the dual-robot obstacle avoidance strategy
is presented in Sect. 4. Furthermore, time-optimal path planning for dual-welding
robots is conducted based on GC-PSO in Sect. 5.
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2 Optimization Problem Description

Apart of thewhite body is selected asworkpiece in this paper. The shape of theworkpiece
and the position of theweld joints are shown inFig. 1. The robot isABBR2400 robot and
the welding tong is GTAW10. The welding pose will be presented in Sect. 3.3. For
convenience, the pose of thewelding tong is defined as “1” or “−1”.When the longer part
is in the upright position, the pose is defined as “1”, otherwise it is defined as “−1”. In view
of the actual situation of the workpiece and fixture, both poses in welding process can be
applied to some welding joints. Such a condition is defined as “0”.

Efficiency is the critical goal for industrial production process, and welding time
is the most direct efficiency indicator. In actual welding process, welding pose is
related to welding time and obstacle avoidance. Therefore, welding pose is con-
sidered during conducting welding robot path planning.

In this paper, two robots are placed symmetrically and oppositely. Thewelding joints
are assigned based on the following principles. First, the working space of the welding
robots does not overlap. Next, welding joints with the same pose are assigned to the
same robot. Besides, welding joints are divided to obtain the shortest welding time and
the welding time for the two robots is nearly the same. If the welding time difference
between the two robots is greater than the minimum difference, the welding joint with
the farthest distance from the robot is assigned to the other robot until the two robots
have nearly the same welding time and the shortest total time.

The time-optimal path planning for the dual-welding robots requires that the
welding tong walks through all welding joints and the cost time is the shortest.
Suppose that the number of weld joints is M, the number of transition points is N,
and the weld joint order is p(i) (i = 1, 2, …, n). Then, the time-optimal path
planning problem can be regarded as a constraint TSP problem. The welding robot
global path planning problem can be described as

minT ¼
XN�1

i¼1

LpðiÞ; pðiþ 1Þ=v; ð1Þ

Fig. 1 Welding workpiece
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s:t: path pðiÞ pðiþ 1Þ is safe path; i ¼ 1; 2; . . .; n� 1; ð2Þ

where
PN�1

i¼1 Lp ið Þ; p iþ 1ð Þ is the sum of the distances between two welding joints,
v is the welding speed which is set as 2 m/s, and path p(i) p(i + 1) is the path
between two welding joints p(i) and p(i + 1).

3 GC-PSO

3.1 Algorithm Introduction

Because traditional PSO algorithm slowly converges and easily falls into local
optimum, GC-PSO algorithm is proposed in this paper. The algorithm divides the
particle swarm into two parts according to the fitness value of each particle.
Particles with fitness value in the top 20% of the total fitness value are regarded as
leading particles, and the remaining particles are followers. After dividing all
particles into two parts, all the particles are grouped randomly. Each group consists
of a leading particle and some followers, where the followers are randomly assigned
to the leading particles and the number of followers in each group is not unique.
When iteration number satisfies t = 10, the fitness value of the particle is reordered.
Then, the leading particle and followers are defined according to the fitness value.
And all the particles are grouped randomly again.

GC-PSO algorithm adopts different speed updating strategies for different par-
ticles. In order to avoid the particle falling into local optimum, GC-PSO algorithm
introduces intra-group competition and inter-group competition in the speed
updating formula [11].

The velocity updating formulas for leading particles is described as

vtþ 1
i ¼ xvti þ vti Randn 0; r2

� �
; ð3Þ

where

r2 ¼
1; ifi\fk

e
�fi þ fk
fi þ �j j ; otherwise

; k 2 1;Nl½ �; k 6¼ i

(
: ð4Þ

The location updating formula for leading particles is described as

xkþ 1
i ¼ xki þ vkþ 1

i ; ð5Þ

where Randn(0, r2) is a Gaussian distribution function with mean 0 and variance
r2. The parameter Randn(0, r2) expands the searching range of particle and avoids
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the particle falling into local optimization. e is an infinitely small number which
promises the denominator is not zero. k denotes the number of the other leading
particles which will increase the competition between the particles. This strategy
can make the particle with poor fitness moves closer to the particle with better
fitness. f is the corresponding fitness value of each particle. Nl is number of leading
particles.

The speed updating formulas for follower are given as

vtþ 1
1 ¼ xvti þ s1 Rand ðvtj1 � vtiÞþ s2 Rand ðvtj2 � vtiÞ; ð6Þ

s1 ¼ e
fi�fj1
fij jþ e; ð7Þ

s2 ¼ e fj2�fið Þ: ð8Þ

The location updating formula for follower is given as

xkþ 1
i ¼ xki þ vkþ 1

i : ð9Þ

The velocity updating formula for follower contains two parameters s1 and s2. s1
is the intra-group competition coefficient, and j1 is the number of leading particles
in the group. Follower competes with the leading particle with probability s1. s2 is
the inter-group competition coefficient, and j2 is the number of the leading particles
in other groups. Followers in this group compete with the leading particles in other
groups with the probability s2.

The detailed flow of the algorithm is presented as follows.

Step 1 Initialize the particle swarm, and define the related parameters: the number
of leading particle, the number of following particle, and the particle size
Popsize.

Step 2 Calculate the fitness value of the particles and determine the individual
optimal position pbest and the global optimal position gbest; set t as 1.

Step 3 After iterating G times, the particles are reordered and grouped according to
the fitness value. G = 10 denotes iteration time.

Step 4 Update the position, velocity and fitness values of the leading particles and
followers according to Eqs. (3), (5), (6) and (9).

Step 5 Update the individual optimal position pbest and the global optimal position
gbest of the current particle swarm.

Step 6 Set t = t + 1; stop if the iteration condition is satisfied; otherwise, return to
Step 3.
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The number of leading particles and the value of update coefficient have an
important influence on the convergence precision and convergence speed of the
algorithm. If Nl and G are set too large, the algorithm cannot converge quickly to
the global optimal value. If Nl and G are set too small, the algorithm easily falls into
local optimum. After tests, the following conclusions can be drawn. When Nl is set
as 20% of the total number of particles, and G is set as 10, the convergence rate is
improved obviously and the convergence precision is guaranteed. In addition, x
decreases exponentially from 0.9 to 0.4 with the increase of the iteration for the
convergence accuracy, convergence rate and robustness of the algorithm.

3.2 Algorithm Discretization

Although the GC-PSO shows the ability of fast convergence and optimization, it
can only solve the continuous problem. In order to solve the problem of dual-robot
path planning, the GC-PSO algorithm needs to be discretized.

In discrete PSO algorithm, each particle represents a feasible solution, and the
population is a set of feasible solutions. Like continuous PSO algorithm, xi in
discrete particle swarm algorithm also represents the ith sorting result, vi represents
the velocity of the ith particle, pbest represents the best individual, and gbest rep-
resents the best population sort. Among them, vi is a set of directions the particle
can search; xi, pbest and gbest are the results of optimization. Equations (3), (5), (6)
and (9) are updated as follows.

Velocity and position updating equations for leading particle are respectively
presented as

vtþ 1
i ¼ xvti þ vti Randn 0; r2

� �
; ð10Þ

xtþ 1
i ¼ xti � vtþ 1

i : ð11Þ

Velocity and position updating equations for follower are respectively presented
as

vtþ 1
i ¼ xvti þ s1 Rand vtj1 � vti

� �
þ s2 Rand vtj2 � vti

� �
; ð12Þ

xtþ 1
i ¼ xti � vtþ 1

i : ð13Þ

In the above equations, the operators +, − and � have new definitions. The
definitions include the rule of particle crossover and combination with individual
and global, which is important to transfer continuous algorithm to the discrete
algorithm. Subtraction operator “−” represents the difference set of individual
optimal position and the current position. For the example of xti � vtþ 1

i o, �
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operation refers to conduction exchange order vtþ 1
i for xti, where vtþ 1

i is a set of
particle exchange orders. Addition operator “+” represents the union of two edge
sets. The above discretization method inherits the characteristics of continuous
GC-PSO. The updating process of GC-PSO is the process moving to the global
optimal solution.

3.3 Algorithm Validation

Convergence rate and accuracy among standard PSO, genetic algorithm (GA),
GPSO and GC-PSO algorithms are compared based on four TSPs. Four algorithms
independently run 30 times for each test function, the population size is set as 100,
and the maximum number of iterations for each run is set as 500 x decreases
exponentially from 0.9 to 0.4 with the increase of the iteration. Other parameters for
these algorithms are listed in Table 1.

The average convergence curves of four algorithms are shown in Fig. 2. It can be
concluded that GC-PSO still shows excellent convergence speed and accuracy with
the same parameters and discrete method. GC-PSO algorithm uses the intra-group
and inter-group competitions by the speed updating formula to make each particle
move toward the global optimal position. The group division strategy ensures that
the algorithm does not fall into local optimum. The simulation results show that
GC-PSO algorithm is still feasible and efficient after discretization.

4 Dual-Robot Obstacle Avoidance Strategy

4.1 Three-Dimensional Grid Method Modeling

Working environment model for robot obstacle avoidance is established first. Grid
method can establish an intuitive working environment which is conducive to judge
local environment. Hence, the three-dimensional grid method is selected in this

Table 1 Algorithms parameters

Algorithm Parameter

PSO c1 ¼ 1:49445; c2 ¼ 1:49445; xmax ¼ 0:9; xmin ¼ 0:4

GPSO [12] c1 ¼ 1:49445; c2 ¼ 1:49445; pc ¼ 0:7; pm ¼ 0:05
xmax ¼ 0:9;xmin ¼ 0:4

GA [13] pc ¼ 0:7; pm ¼ 0:05; GGAP ¼ 0:1

GC-PSO c1 ¼ 1:49445; c2 ¼ 1:49445; xmax ¼ 0:9; xmin ¼ 0:4
leading particle percent ¼ 0:2; follower percent ¼ 0:8
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paper to establish the working environmental model. And the steps are given as
follows.

Step 1 Simplify the workpiece as a combination of some triangles. This is because
free grid and obstacle grid are more easily identified through triangles.

Step 2 Create the grid matrix. Grid size affects the accuracy of path planning. The
less the grid is, the better the accuracy of the path is, but this will take a
long time to search the best path. The larger the grid is, the worse the
accuracy of the path is, while the best path can be quickly found. In view of
the searching time and accuracy, the whole space is divided into cubes

(a) (b)

(c) (d)

Fig. 2 The average convergence curves of four algorithms
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with a side length of 5 mm. The center of each cube is used as the starting
point of the search path. Each center point is projected to a plane. If the
projection point is outside the triangle, this triangle is not an obstacle at this
point. If the projection point is inside the triangle and the length of the
vertical line is less than 6 mm, the triangle is an obstacle.

Step 3 Identify the free grids and obstacle grids. If there is an obstacle for the center
point, it means that the point is the obstacle point and the related grid is an
obstacle grid; otherwise, the point is a free point and the related grid is a free
grid. Obstacle points are indicated by *, as shown in Fig. 3.

4.2 Obstacle Avoidance Between Robot and Workpiece

Local searching starts from initial solution, and begins to search the vicinity field. If
particle can find a better solution, then it replaces the initial solution. Ant colony
algorithm is applied to realize local obstacle avoidance path planning [14].

The parameters of ant colony optimization (ACO) are initialized as follows. Based
on the empirical value, the weight a of the pheromone is set as 1, the weight b of
heuristic pheromone is set as 11, the evaporation coefficient q of pheromone is set as
0.9, and the pheromone quality coefficient Q is set as 5. The iteration number N is set
as 50, and the population quantityM is set as 50. The coordinates of the starting point
and the terminal point are initialized. The initialized pheromones for all points are set
as 0.5. Iterator is defined as n. The number of ants is expressed as k.

The local obstacle avoidance path of two robots can be obtained by the local
search algorithm. However, the path obtained by ant colony algorithm is not a
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straight line, so it cannot meet requirement of the shortest welding path. In order to
achieve the shortest and collision free welding path, second optimization is con-
ducted. Principles of the second optimization are presented as follows. Some nodes
are canceled and leaved nodes are connected to obtain a shorter path. In the process,
collision detection is always conducted to promise a collision free path. Welding
joints 12 and 15 are taken as an example. The simulation results are shown in
Fig. 4.

4.3 Obstacle Avoidance Between Robots and Fixture

The obstacle avoidance between robot and fixture needs to be studied. In this paper,
the welding tong is regard as a point, and the distance between welding tong and
fixture is calculated to conduct collision detection.

Collision detection between welding tong and fixture steps is given as follows.
A welding path is obtained by optimization algorithm firstly. Then, the shortest
distance between welding tong and fixture is calculated. If the shortest distance is
less than the safety threshold, geometrical method [15] is used to obtain a transition
point to avoid collision.

Figure 5 shows two welding joint positions in the adjacent region. Starting point
and terminal point are connected in a line which is called Line 1. The intersection of
two planes is called Line 2. Lines 1 and 2 locate on different surfaces. A transition
point in Line 2 is obtained to make the path shortest, which moves from the starting
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Fig. 4 Local obstacle avoidance path planning
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point, the transition point, and reaches the terminal point. This transition point is the
intersection of the line 2 and the middle vertical line of the two lines.

5 Time-Optimal Path Planning for Dual-Welding Robots

Based on the environment modeling and the obstacle avoidance strategy, GC-PSO
algorithm is used to optimize the robot welding time, and realizes the time-optimal
obstacle avoidance path planning. Assume that the welding speed of the robot is
2 m/s, and the welding time of each weld joint is 0.5 s. The steps of time-optimal
path planning are presented as follows.

Step 1 Set the position of two robots which are placed on the two sides of work-
piece, and determine the weld joint coordinates.

Step 2 Initially assign all the welding joints for two robots according to the
assignment principle.

Step 3 Establish weldment and robot workspace model according to the grid
method.

Step 4 Obtain the local collision free path for robot and weldment by ant colony
algorithm.

Step 5 Realize collision free path among the welding tong, tooling fixture and
workpiece based on collision detection and geometry method.

Step 6 Based on the division result of the welding joints, calculate the welding time
of each robot by discrete GC-PSO algorithm.

Step 7 If the welding time difference between two robots is greater than the set time
difference, divide the weld joints again according to the division principle of
weld joints, and return to Step 6. Otherwise, go to Step 8.

Step 8 Output the optimized welding joint order and the welding time of each robot.

Fig. 5 Transition point
solution
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In this paper, in order to meet the requirement of the shortest welding time,
welding joints are divided according to the welding pose. This principle can reduce
the welding pose change in welding process. In order to facilitate the calculation,
the welding tong reverses when it arrives at the transition point, and the reversing
time is set as 2 s. For example, there is a pillar between the welding joints 10 and 11
for the robot 2. Hence, geometric method is used to avoid collision between the
robot and fixture. A transition point is selected at the edge of the workpiece. When
the robot 2 finishes the welding of the welding joint 10, it moves to the transition
point. Then, it moves to the welding joint 12 and welds the welding joint 12.

Based on the optimization strategy, welding path lengths for two robots are
70.2914 and 109.29004 mm, respectively. The final optimal welding time is
94.259072s. Global path planning orders are: 19–20–21–22–23–25–24–26–27–28–
31–30–29 and 1–2–3–4–5–8–7–6–9–10–11–12–13–16–15–17–14–18, respec-
tively. The path planning results with obstacle avoidance for dual-welding robots is
shown in Fig. 6.

6 Conclusion

Compared with traditional manual teaching method, intelligent robot path planning
has a high industrial application value. In order to realize intelligent welding path
planning for two robots, GC-PSO algorithm and obstacle avoidance strategy are
studied after the optimization problem is described. Then, the dual-robot
time-optimal path planning is conducted based on the mentioned optimization
strategy. The optimized welding path can help welding engineering by shortening

(a) Dual-robot welding path in RobotStudio (b) Dual-robot welding path in Matlab
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the teaching time. As welding robot application and artificial intelligence tech-
nology increase rapidly, intelligent robot welding path planning will draw more
attention, and will play an important role in welding automation in the future.

It can be seen that only simulation is performed in this paper. Detailed research
works need to be done to improve the optimization strategy. And some experiments
also need to be done to promise the strategy effectiveness.
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