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Abstract Welding shape is important in evaluating welding quality, but accurate
predictive model is hard to achieve, because welding is a complex nonlinear pro-
cess, and the sampled data are inevitably contaminated. Extreme learning machine
(ELM) is used to construct a single-hidden layer feedforward network (SLFN) in
our study, for improving stability of welding model, M-estimation is combined with
ELM and a new algorithm named ME-ELM is developed; researches indicate that it
works more effective than BP and other variants of ELM in reducing influence,
furthermore, it can improve the model’s anti-disturbance and robustness perfor-
mance even if the data are seriously contaminated. Real TIG welding models are
constructed with ME-ELM, by comparing with BP, multiple nonlinear regression
(MNR), and linear regression (LR), conclusions can be gotten that ME-ELM can
resist the interference effectively and has the highest accuracy in predicting the
welding shape.

Keywords Welding shape � Welding model � ME-ELM algorithm
Stability

1 Introduction

There are many kinds of welding methods, such as resistance welding, braze
welding, gas metal arc welding (GMAW), tungsten inert gas (TIG) welding, flux
cored arc welding (FCAW), submerged arc welding (SAW), etc., as a kind of
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hot-working process, welding is widely used in building of marine engineering,
railways, and electrical power plants etc., it is reported that more than 2/3 of the
steel need welding before utilization [1].

The mechanical property after welding is not only determined by composition of
metal, but also by the shape of welding joint [2, 3], the desired welding shape relies
on many factors, such as welding speed, wire feeding speed, welding current,
welding gas flow rate, so it is difficult to construct the model between the shape and
so many welding parameters. Till now, there are at least four kinds of modeling
methods: multi-nonlinear regression (MNR), response surface methodology (RSM),
Taguchi method, and ANN nonlinear mapping [4–7]. Shi et al. [8] used MNR to
predict the bead geometry in wet FCAW, and sensitive analysis is performed later,
this method is also used on SAW to predict the pips bead shape and realize online
control [3]; Palani and Morgan [9] used RSM to develop a model predicting
welding joint shape in FCAW; Taguchi is popularly used and has various forms,
Tarng et al. [10] and Biswas et al. [11] applied grey-Taguchi and PCA-Taguchi to
predict the bead shape in SAW. However, because welding shape relates to many
factors, all methods above can not work efficiently and effectively. ANN and other
similar intelligent calculation methods are widely used now [12–15], but from the
view of mathematics, ANN and its variants still have to face several issues like
time-consuming, over-fitting, or local minima, it is meaningful to find out new
measures to build welding model.

Based on ELM, some hybrid methods are supposed in our research. SA, GS, and
GA are combined with normal ELM to find out better network structures, ME-ELM
is suggested for reducing training data noise to enhancing the model stability and
accuracy.

The rest of this paper is arranged as follows. Section 2 introduces the principle
of basic ELM, points out relevant problems relating accuracy and stability; Sect. 3
focus on enhancing model stability, ME-ELM is introduced in detail, tests on
specific complicated functions indicate that this algorithm has the ability to refrain
the adverse effect of noise; Sect. 4 provides models on real TIG welding, besides
the method proposed in this paper, BP and MNR are also used to create welding
models, the residual errors are compared as well as that of LR(linear regression)
which has been published in references [27] already; in the end, conclusions are
presented in Sect. 5.

2 Introduction of Basic ELM

2.1 Principle of ELM

ELM is a kind of feedforward neural network, it has two types of structure, named
as multilayer structure and single-layer structure. Single-layer structure is an SLFN,
it has an input layer, an output layer, and only one hidden layer, each hidden neuron
has an activation function, the functions may be same or different, just as shown in
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Fig. 1, [x1, x2, …, xN] means input data, [y1, y2, …, yN] means output data,
W = [W1, W2, …, WN] and b = [b1, b2, …, bN] are input matrix and output matrix.
Hidden layer maps data from input space to feature space with input matrix W, and
then convert them into result space with output matrix b, it is clear that they play an
important role in model performance.

The working process is as follows: Given training samples (xi, ti), input vector
and output vector are xi = (xi1, xi2, …, xin) 2 Rn and yi = (yi1, yi2, …, yim) 2 Rm, if
the number of hidden neurons is L and activation function is g(xi), we may have:

yj ¼
XL
i¼1

bigðwixj þ biÞ; j ¼ 1; . . .;N ð1Þ

where wi = (wi1, wi2, …, win) indicates weights from input row to ith hidden
neuron, bi = [bi1, bi2, …, bim] represents rights from ith hidden layer to output
layer.

Equation (1) can be summarized as:

Y ¼ Hb ð2Þ

b means output matrix, H is input matrix and it can be expressed:

Hðw1; . . .;wL; b1; . . .; bL; x1; . . .; xNÞ

¼

gðw1 � x1 þ b1Þ . . . gðwL � x1 þ bLÞ
. . .

. . .

. . .

. . .

. . .

. . .

gðw1 � xN þ b1Þ gðwL � xN þ bLÞ

2
66664

3
77775
N�L

ð3Þ

There is a conclusion in [16] that for a stand SLFNs which has n input neurons,
m output neurons, and L hidden layer neurons, given N distinct observations {xi, yi},
if the activation function g: R ! R is infinitely differentiable in any interval, then we
can randomly get the wi and bi according to any continuous probability distribution
and have the result that the input matrix H is definitely invertible and b can be
analytically calculated out based on least square solution. So we have Eq. (4).

Fig. 1 Network structure of ELM
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b̂ ¼ HyT ¼ min
b
ððHb� YÞ ¼ 0Þ ð4Þ

Judgments can be obtained from Eq. (4) that different H† leads to different
network output, and more, different number of hidden neurons needs different
methods of calculating H† [17], such as singular value decomposition, orthogonal
projection, and iterative methods [18, 19], so how to solve H† is important, a
popular and efficient closed-form solution is:

b̂ ¼ HTðI=CþHHTÞ�1T; if N� L
ðI=CþHTHÞ�1HTT; if N[ L

�
ð5Þ

where C is a parameter used for controlling the trade-off between the training error
and norm of output weights [20, 21], it can improve network accuracy significantly.

2.2 Main Problems in Modeling of ELM

Equation (4) discloses the reason why ELM has fast training speed, but reveals two
problems with accuracy and stability. The first one is about the number L and the
rights of input matrixW, if we can choose proper value of them, the model accuracy
will be improved; the second problem is about matrix b, as the discussion above, b
is essentially decided by H, different H results in different b, but random W and
traditional solving of H† can not guarantee a better b, especially when the training
data is contaminated, so we need a new way for better b.

3 Methods for Improving Model Stability

3.1 Design of ME-ELM

Equations (4–5) illustrate that the simulation results are greatly affected by training
data, noisy data will inevitably lead to poor performance. M-estimator is a kind of
robust estimator which is good at drawing out a reliable conclusion from bad data,
especially outliers. So, M-estimator is tried to combine with ELM to decrease the
noise influence, by adopting estimation function and least square criterion, output
matrix parameters are adjusted during iterations [22], this way is embedded into
training algorithm of ELM and is called ME-ELM.

Considering the training target ðHb� YÞ ¼ 0, formula (4) can be expressed as
follows:
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b̂ ¼ ðHTPHÞ�1HTPT ð6Þ

where P is an adjusting matrix, it can reduce outliers influence by changing its
values adaptively. If samples have no bias, all related coefficients in P will be 1,
which implies ME-ELM works in the same way as ELM; if part of samples are
moderately polluted, the corresponding coefficients in matrix P will be less than 1,
to weaken the noise influence; for samples with gross errors, the relative coefficients
tend to be zeros, therefore the bad impacts can be decreased greatly. So P plays an
important role here, its values are regulated by estimation function w, for clear
description, statistic function (x) is introduced as first.

QðbÞ ¼
XN
i¼1

qðeiÞ ¼
XN
i¼1

qðTi � HibiÞ ð7Þ

where Q(x) is optimization objective function, solutions to Eq. (7) are called
M-estimators:

b̂ ¼ argmin
b
ð
XN
i¼1

qðTi � HibiÞÞ ð8Þ

Define estimation function w xð Þ ¼ @q xð Þ
@b , so the minimum b is:

@QðbÞ
@b

¼ 0 )
XN
i¼1

wðTi � HibÞHi ¼ 0 ð9Þ

There are several popular estimation functions w, similar results can be gotten in
terms of efficiency and deviation with one of them [23], Hurb function is expressed
as Eq. (10) [24].

wðxÞ ¼ x xj j � k
k xj j[ k

�
; qðxÞ ¼ x2=2 xj j � k

k xj j � k2=2 xj j[ k

�
; k ¼ 1:345 ð10Þ

Algorithm of ME-ELM can be designed as follows:

Step 1 Determine the network structure, acquire original value with normal ELM:
b0 = H†T and e0 = T−H†b0

Step 2 Setting initial parameters, such as adjusting factor k = 1.345 and error
variable e = 1

Step 3 Iteration process:

while ((e <1e04) or (N<100))

(a) Standardizing ei as ei = ei/s = 0.6745ei/med(|ei|), med(|ei|)
is the middle of |ei|.
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(b) Adjusting Wi ¼ w uið Þ
ui

and calculate b̂ ið Þ ¼ HTWiHð Þ�1HTWiT with

Huber function.

(c) Renewing variables: ei ¼ T � Hb̂ ið Þ, N = N+1,e ¼ b̂ ið Þ � b̂ i�1ð Þ
��� ���

ei ¼ T � Hb̂ðiÞ; N ¼ Nþ 1; e ¼ b̂ðiÞ � b̂ði�1Þ
��� ���

End while

3.2 Experiments for Stability

To verify the capability of ME-ELM in enhancing stability, some popular algo-
rithms are used for comparison, including ELM, ELM-C, B_ELM, and BP, the
networks are constructed based on noisy samples and tested with non-noise data,
then stability performance can be distinguished by RMSE and DEV. SinC function
is defined as follow:

yðxÞ ¼ sin x=x x 6¼ 0
1 x ¼ 0

�
ð11Þ

First, 5000 groups data are generated randomly, then white Gaussian noise is
added to independent variables, by selecting different noise distribution range of
[−0.2 0.2], [0 2], and [−2 2], three batches of 5000 training data are prepared, after
network models are constructed by various algorithms, stability performance can be
checked out with noise-free data. Comparisons are carried out between ME-ELM
and some other algorithms, such as ELM-C, BP, the number of hidden neurons is
fixed as 20, to examine the universal property of ME-ELM, several linear and
nonlinear multivariable function are tested, results of y = exp(x1/2) x1 + sin(x2) are
also listed in Table 1.

In addition, to avoid rank deficient problem in ME-ELM, random minor value
can be added to the adjusted value on the base of Eq. (10), which is expressed as
follows.

wðxÞ ¼ x xj j\kðk[ 0Þ
kþ 0:1 � rankð0Þ xj j[ kðk[ 0Þ

�
ð12Þ

Obvious difference in stability performance can be seen from Fig. 2, where both
ELM [16] and ME-ELM are used to model SinC function when the training data
have been added Gaussian noise, and the noise distribution interval is [0 2].

It is clear from the comparison above that ME-ELM has good ability of noise
reduction, it can produce a better model which has much better performance than
ELM, ELM-C, and B-ELM.
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4 Study of TIG Welding Modeling and Welding Shape
Prediction

Welding is a complex time-variant process and welding joint shape relates to many
variables [25, 26], furthermore, joint shape is susceptible to interference, even the
fluctuation of electric grid may result in the changing of geometry, and all the
training data will inevitably be contaminated, so how to guarantee the model per-
formance is very important.

4.1 Experimental Design and Data Acquisition

To design experiments, the contributing factors and relative levels should be
determined at first, and then experimental design matrix will be arranged in
orthogonal method, the work is often planned as follows:

1. Identification of important process parameters.
2. Finding the upper and lower limits with different levels of the parameters.
3. Confirm design matrix according to orthogonal table
4. Conducting the experiments as per the design matrix, if needed, repeating the

specific experiment.
5. Specimen preparation, if necessary, measuring the bead shape on different

samples.
6. Treating data with filtering and recording these responses.

For convenient comparison, TIG welding data published in [27] are used, it is
also used in [28] where the TIG welding variables include welding speed (S), wire
speed (WS), cleaning percentage (CP), welding current (C) and arc gap (G), and
weld bead shape parameters comprise front height (FH), front width (FW), back
height (BH), and back width (BW), shown in Table 2.

-10 -8 -6 -4 -2 0 2 4 6 8 10
-0.5

0

0.5

1

1.5
ELM Testing Regression Result

ELM Fitness

Testing Data

-10 -8 -6 -4 -2 0 2 4 6 8 10
-0.4
-0.2

0
0.2
0.4
0.6
0.8
1

ME-ELM Testing Regression Result

Testing Data
ME-ELM Fitness

Fig. 2 Testing results of ELM and ME-ELM
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4.2 Models Performance Comparison for TIG

For simplicity, only the comparison between ME-ELM and BP, MNR, and LR are
given out. Welding data are normalized at first and then separated into two groups:
56 records are used for training and the rest 16 records for testing. To begin with
ME-ELM, the number of middle neurons is set as 40 by SA at first, and then, GA is
used to get proper input matrix, M-estimation is used at last to calculate the output
matrix. BP network is created with 40 middle layer numbers and four output
numbers, active function and output function are “tansig” and “purelin”, the
comparison is shown in Fig. 3.

The MNR model is always better than linear regression [29], suppose the input
variables are X1, X2, X3, X4, X5, the output variables indicating the bead shape are
denoted by FH, FW, BH, and BW, the nonlinear regression forms can be given out
as:

FH ¼ g1x
a1
1 x

a2
2 x

a3
3 x

a4
4 x

a5
5

FW ¼ g2x
b1
1 x

b2
2 x

b3
3 x

b4
4 x

b5
5

BH ¼ g3x
c1
1 x

c2
2 x

c3
3 x

c4
4 x

c5
5

BW ¼ g1x
d1
1 x

d2
2 x

d3
3 x

d4
4 x

d5
5

9>>=
>>;

ð13Þ

By proper treating of original data, it can be converted to:

lgðFHÞ ¼ G1 þ a1 lg x1 þ a2 lg x2 þ a3 lg x3 þ a4 lg x4 þ a5 lg x5
lgðFWÞ ¼ G2 þ b1 lg x1 þ b2 lg x2 þ b3 lg x3 þ b4 lg x4 þ b5 lg x5
lgðBHÞ ¼ G3 þ c1 lg x1 þ c2 lg x2 þ c3 lg x3 þ c4 lg x4 þ c5 lg x5
lgðBWÞ ¼ G4 þ d1 lg x1 þ d2 lg x2 þ d3 lg x3 þ d4 lg x4 þ d5 lg x5

9>>>=
>>>;
;Gi ¼ lgðgiÞ;

i ¼ 1; 2; 3; 4

ð14Þ
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Fig. 3 Training errors of BP and ME-ELM
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So the regression model can be achieved according to Least Square principle:

FH ¼ 0:7341 x1
46

� �0:5667 x2
2:5

� �0:3428 x3
70

� ��0:0874 x4
3:2

� ��0:0459 x5
110

� ��1:9754�1

FW ¼ 7:8699 x1
46

� ��0:6622 x2
2:5

� �0:0392 x3
70

� �0:0844 x4
3:2

� �0:1290 x5
110

� �1:4149
BH ¼ 0:7949 x1

46

� ��1:2730 x2
2:5

� �0:7392 x3
70

� �0:3809 x4
3:2

� �0:6715 x5
110

� �2:3903
BW ¼ 7:6050 x1

46

� ��1:0607 x2
2:5

� ��0:0473 x3
70

� �0:01877 x4
3:2

� �0:1341 x5
110

� �2:5845

9>>>>=
>>>>;

ð15Þ

Comparison results between MNR, LR, and ME-ELM are shown in Table 3,
The better values are shown in bold font, it is clear that ME-ELM algorithm has
much more better performance.

5 Discussion of ME-ELM in Underwater Welding

Studies of welding parameters optimization methods have been carried out for a
long time, in which the welding model is very important, especially in underwater
welding [30]. There are three kinds of welding methods for underwater welding,
named as wet welding, dry welding, and semidry welding. Compared with other
two methods, there are many bubbles and turbulent fluid accompany with the wet
welding process, in the meantime, evaporation cooling has a great effect on the melt
zone so as to lead to a bad welding performance, the horizontal resurfacing welding
is shown in Fig. 4. So it is critical to refrain the noises for building the wet welding
model, preliminary study suggested that ME-ELM can work its way effectively and
detail results will be given out in further paper.

6 Conclusion

Methods for improving model accuracy and stability are studied in this paper,
comparison results on benchmark problems, artificial functions, and real TIG
welding process indicate that ME-ELM can work effectively. Further conclusions
can be drawn as follows:
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• Regarding the ability of reducing data noise and improving the simulation
accuracy, ME-ELM is better than BP, normal ELM and its corrective methods,
such as ELM-C, B-ELM, it is suitable for constructing welding model.

• Parameter k of estimation functions in ME-ELM is very important. Small k lead
to small rights for outliers, this will result in a strong suppression on influence.
On the contrary, if k is set to be a big positive number, ME-ELM tends to be the
normal ELM.

• MNR and LR are all prototype-based, their performance relies mainly on type
assumption, generally speaking, and their simulation accuracy is inferior to that
of ME-ELM.
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