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Abstract Welding arc sound signal is an important signal in intelligent welding
diagnosis, due to its informative, noncontact, easy collected. However, due to the
interference of ambient noise, the arc sound signal is highly complex and noisy,
which seriously limits the application of arc sound signals. In this paper, a
single-channel blind source separation (BSS) algorithm based on the ensemble
empirical mode decomposition (EEMD) is proposed to purify and denoise the arc
sound signals. First, EEMD is used to decompose one channel signal to several
intrinsic mode functions (IMFs). Second, principal component analysis (PCA) is
used to reduce the multidimension IMFs to low-dimension IMFs, which are
regarded as the virtual multichannels signals. Finally, independent component
analysis (ICA) separates the virtual multichannels signals into target sources. The
approach was tested by simulation and experiments. The simulated results show
that signals separated from mixed signal using this approach highly match the
source signals that make up the mixed signal. Moreover, experimental results
indicated that the source signals of arc sound were effectively separated with
the environmental noise signals. The statistical characteristics of the spectrum in
5–6.5 kHz band extracted from the arc sound source signals can accurately identify
the two types of weld penetrations.
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1 Introduction

As an accompanying signal of welding process, arc sound signal carries abundant
information of welding physical parameters. Experienced manual welders can
obtain higher welding quality through the feedback of arc sound [1]. Welding arc
sound signal is the interaction of energy change, arc volume fluctuation, protective
gas flow, molten pool shape, and so on [2–5], thus creating a tight correspondence
between arc sound signals and those parameters. Recently, acoustic signals are
widely used in welding process defect detection and welding dynamic monitoring.
Emad [6] reveals the relationship between arc sound signal and such penetration
states as partial penetration, full penetration, and burn through. Power spectrum
density (PSD) features were extracted from arc sound signals, and three welding
states were effectively identified by means of neural network. Lv [7–9] realizes the
recognition of welding arc length and penetration state, using time and frequency
domain characteristics extracted from the sound signals of gas tungsten arc welding
(GTAW). Zhang [10] using support vector machine (SVM-CA) estimate the dif-
ferent weld penetrations, local caving, and porosity of GTAW, based on the fusion
of voltage, sound, and spectral signals. And a set of multi-signals preprocessing,
feature extraction, dimensionality reduction, and fusion defect pattern recognition
methods were put forward.

The key to the accuracy of welding defect detection is the quality of the original
signal. As for the complex working environment, the original arc sound signal is
usually a superposition of many source signals such as arc, welding machine, and
environment. As a result, the original arc sound signals are complex and have low
signal-to-noise ratio. Therefore, effective noise reduction is greatly important to
improve the accuracy of welding defect detection. At present, the widely used
methods for denoising are noise filtering, time domain average, etc. [11]. But these
methods cannot remove the environmental noise whose frequencies are low and
overlapping with arc sound signal. Blind source separation (BSS) is a dominant
technique for separating the multivariate signals into different source independent
components. The independent component analysis (ICA) is the main method for
BSS. ICA separates useful signals from noises and concentrates them into the
corresponding independent components. Then the noises can be easily reduced. It
has been applied in various fields such as rotors fault diagnosis, electroen-
cephalography (EEG), etc. [12, 13], but few literatures report the application on
welding audio signal. The biggest limit of ICA is that if there are fewer channel
signals than sources signals, ICA cannot guarantee efficient separations and useful
information may be lost.

In this paper, a novel approach of single-channel BSS based on EEMD is
presented. To overcome the limitation of the ICA, EEMD has been proposed to
assist ICA for improving the performance of denoising. The single-channel mixed
signal is decomposed first by EEMD to IMFs. Then PCA is used to reduce the IMFs
to principal components (PCs). Finally, ICA separated the PCs into the target
source signals. The effectiveness of the approach is verified by simulation and
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actual arc sound signals. The results proved that the proposed approach is con-
ducive to the characteristics extraction of arc sound signals. Eight statistical char-
acteristics extracted from the spectrum of separated signal u1 can distinguish the
partial penetration from the full penetration effectively.

2 Single-Channel Blind Source Separation

2.1 Blind Source Separation

BSS is used to separate source signals from one or more observations with an
unknown mixture process of sources. ICA is a common method for BSS and is
widely used in many disciplines [14]. In this method, source signals are separated
from observations based on the statistical independence hypothesis of sources,
without any prior knowledge. The ICA mathematical model is shown in Fig. 1.

Where s(t) (sðtÞ ¼ s1; s2; . . .; sm½ �T) is source signals. x(t) (xðtÞ ¼ x1; x2; . . .; xn½ �T)
is original signals, which is linearly combined from s(t) by a mixing matrix,
expressed as x(t) = An�m�s(t).

Under the condition that x(t) is known, An�m and s(t) are unknown, ICA is the
approximate estimation of separating source signals s(t) by optimizing the sepa-
ration matrix Wn�m. The optimal Wn�m should make sure the separated signals have
strongest independence.

Therefore, ICA is essentially an optimization problem, which mainly includes
two aspects: the one is to establish the optimal objective function to determine the
independence standard; the other one is to select the appropriate algorithm to
optimize the objective function. According to these two aspects, a variety of ICA
methods can be derived. Among them, fast independent component analysis
(FastICA) is a widely used and mature algorithm. In this method, the negative
entropy maximization standard is used to obtain the most optimal separation matrix
[15]. The calculation steps are listed in Fig. 2.

2.2 Single-Channel BSS Based on EEMD

Because of the complex environment in engineering practice, the number of signal
sources is difficult to predict. Meanwhile, the multisensors are high cost and hard to
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assembly. So the number of sensors is often less than that of signal sources, and
even only single-channel signal is collected. In order to realize the single-channel
BSS, the single-channel signal should be decomposed to virtual multichannel
signals.

Empirical Mode Decomposition (EMD) is a time-frequency analysis method
proposed by Huang in 1998 [16]. It decomposes the signal into a series of Intrinsic
Mode Functions (IMFs) based on the local time characteristics of signals. Thus, the
complex signal is reformed into multiple single components whose instantaneous
frequencies are meaningful. EMD can adaptively decompose the signals, so it is
quite suitable for decomposing the nonlinear and nonstationary signals.
A significant drawback of EMD is that the decomposed signals have aliasing in
frequency.

EEMD is an improved EMD algorithm [17]. The aliasing is restrained by adding
white noises to original signal before decomposing. The decomposed results, which
have added different white noise, are averaged to eliminate the white noises in
IMFs. Because of the uniform distribution of white noise scale, it can not only
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smooth the abnormal disturbances such as pulse interference but also can provide
evenly distributed random scale for signals, and effectively suppress the frequency
aliasing. The steps of the EEMD algorithm are described as follows.

(a) Adding Gaussian white noise x(t) to x(t),

X tð Þ ¼ x tð Þþx tð Þ ð1Þ

(b) Decompose x(t) to IMFs by using EMD,

X tð Þ ¼
XN

n¼1

cn tð Þþ rN tð Þ ð2Þ

where, cn(t) the nth IMF; N is the number of IMFs in each decomposition; rN(t) is
the residual volume after decomposing.

(c) Repeat steps a and b M times, but adding different Gaussian white noise each
time. The final IMFs are the average of M times IMFs:

cn tð Þ ¼ 1
M

XM

i¼1

cin tð Þ ð3Þ

where, cin(t) is the nth IMF decomposed by the ith times EMD. As the final IMFs
decomposed by EEMD are usually multiple, which will cause high iteration
numbers and slow convergence when multiple IMFs are directly used for ICA. To
solve this problem, PCA is used to reduce the number of the IMFs. The principal
components which contribute most are selected and regarded as the virtual multi-
channel signals. Then FastICA is processed on them to obtain the separated source
signals. Then the single-channel BSS is proposed and its total principle is as follows
(Fig. 3):
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Fig. 3 Total block diagram of single-channel BSS
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3 Simulation Analysis

In order to verify the effectiveness of this proposed method, simulations are carried
out. First, three source signals, labeled s1(t), s2(t), s3(t), are established and mixed
into a single-channel mixed signal x(t).

s1 tð Þ ¼ 5� sin 2� p� 450� tð Þ � e�5000 t�roundðt�15Þ=15ð Þ2ð Þ ð4Þ

s2 tð Þ ¼ sin 2� p� 100� tð Þ ð5Þ

s3 tð Þ ¼ sin 2� p� 50� tð Þ ð6Þ

x tð Þ ¼ 1:1s1 tð Þþ 0:7s2 tð Þþ 0:85s3 tð Þþ 0:1n tð Þ ð7Þ

where n(t) is a noise signal. The signals are simulated at a sampling rate of
2048 Hz. Their time domain and spectrum graphs are shown in Fig. 4.

According to the process scheme showed in Fig. 3, the mixed signal x(t) is
decomposed to nine IMFs by EEMD, in which the variance of the white noise is half
the variance of x(t), and the decomposed times (M) is 100. The nine IMFs are reduced
to three principal components by PCA, and the cumulative contribution rate of the
three principal components is 98.47%. The three principal components are used as the
virtual multichannel mixed signals to be processed by ICA. And finally, three sepa-
rations are obtained, whose time domain and spectrum graphs are shown in Fig. 5.

Comparing the results in Figs. 4 and 5, the separation signals are basically
consistent with the source signals. It is proved that the newly proposed method can
effectively realize the blind source separating of single-channel mixed signals. The
differences of the amplitudes and orders between the separated signals and the source
signals are also consistent with the uncertainty of the results separated by BSS.
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Fig. 4 The time and frequency domain graphs of source signals and mixed signal
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4 The Welding Arc Sound Signal Processing

4.1 Experimental Data Acquisition

The arc sound signal used in this paper is the single-channel arc sound signals
collected during the welding process of aluminum alloy pulsed GTAW. The
experimental conditions are shown in Table 1.

The audio sensing system includes an omnidirectional capacitance microphone
(MP201) to pick audio signals, and a signal conditioner (MC104) to filter and
amplify the signals. The microphone has the frequency response from 20 to
20 kHz. The sound signals are collected with the sampling rate of 40 kHz by a data
acquisition card in the computer.

In order to verify the influence of single-channel BSS on welding quality
diagnosis, arc sound signals in two states of welding, including partial penetration
and full penetration, were collected and processed respectively. Because the base
welding current parts are mainly used to maintain the welding arc and contain little
welding information. The base level signals are discarded and only peak signals are
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Fig. 5 The time domain and spectrum graphs of separated signals

Table 1 Experiment
conditions and welding
parameters

Welding parameters Value

Pulse frequency (Hz) 2

Peak current (A) 260

Base current (A) 50

Ar flow (L/min) 15

Welding speed (mm/s) 3

Feed speed (L/min) 7

Electrode diameter (mm) 3.2

Duty ratio (%) 50

Material type LF6 Al alloy
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reserved for further processing. To meet the requirement of processing efficiency
and accuracy, the signals are divided into several data blocks whose size are 3000
sampling points.

4.2 Arc Sound Signal Processing and Analysis

The time domain graph and spectrum graph of arc sound signals of partial pene-
tration and full penetration are shown in Fig. 6. The frequency spectrum compar-
ison between different penetration states show that the arc sound signal spectrum is
mainly concentrated at 0–15 kHz, and the frequency distributions are complex. The
frequency characteristics under different penetration states are different, but not
significant.

The proposed method of single-channel BSS was used to deal with the welding
audio signals. First, the single data block was decomposed to 12 IMFs by EEMD.
Then PCA was used to reduce the 12 IMFs to three principal components, whose
sum contribution rate was more than 90%. The three principal components were
treated as the virtual multichannel signals. The separated signals are separated from
those three virtual channel signals through FastICA algorithm. The results are
shown in Fig. 7.

Figure 7a, b are spectrums of three separated signals obtained from partial
penetration and full penetration welding acoustic signals, respectively. Due to the

(a) Time domain

(b) Frequency spectrum

Fig. 6 The time domain and spectrum graphs of the partial penetration and full penetration arc
sound signals
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uncertainty of the amplitude and the order of signals separated by BSS, a method is
proposed to identify and order each separation according to their characteristics.
The correlation coefficients between the each separation signal and the original
signal are calculated, and the separation with maximum correlation coefficient is
selected as u1. The remaining two separations are ordered by the frequency of
spectral peaks. The separation with higher peak frequency is selected as u2, and the
other is u3. The separations in Fig. 7 have been sorted. The correlation coefficients
between each separation signal in Fig. 7 and the original mixed signal are shown in
Table 2.

It can be seen from Table 2 that the separation signal u1 has a high correlation
with the original signal, while the separation signal u2 and u3 have very small
correlation with the original signal. In Fig. 7, the spectrum of the separated signal
u1 is similar to that of the original signal, while u2 and u3 greatly differ from the
original signal. These indicate that the separated signal u1 contains the main
welding arc sound information, while u2 and u3 are isolated signals other than the
audio signal. It is obvious that the spectrum in the middle frequency band
(5–6.5 kHz) is remarkable.

Thirty groups of full penetration and partial penetration samples were processed
as mentioned above, 15 common statistical characteristics were extracted from the
frequency spectrum in the 5–6.5 kHz band of signal separation u1 to identify dif-
ferent penetration states. The identification results of characteristics extracted from
the separated signals were compared with that from the original signals. The results
show that the 15 characteristic values extracted from the original signals cannot
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Fig. 7 The spectrum of partial penetration and full penetration

Table 2 The correlation
coefficients between each
separation and source signals

u1(t) u2(t) u3(t)

Partial penetration 0.926 0.022 0.322

Full penetration 0.977 0.123 0.014
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distinguish the partial penetration from full penetration. However, for the charac-
teristics exacted from the separation signals u1, there are eight characteristics can
effectively distinguish the two welding penetration status, including the mean,
amplitude, energy, variance, root mean square, waveform factor, covariance, and
peak value of the spectrum. The identification results of first four characteristics are
shown in Fig. 8.

Figure 8 shows that the characteristics extracted from the original signals are
irregularly distributed and cannot distinguish the two penetration states. The sta-
tistical characteristics of u1 can effectively distinguish two kinds of welding pen-
etration states. The main reason can be analyzed as follow: As is known, sources of
sound emission are ordinarily from the vibration caused by plasma, metal vapor,
and cracking in weld zone. This vibration usually has a higher frequency corre-
sponding to the high-frequency component of the arc sound. When the weld
penetration changes, the vibration’s intensity and features change accordingly,
which cause an obvious change of high frequency in the spectrum of arc sound.
However, the original audio sound signals contain noises produced by environment,
equipment, and so on. The frequency domain information of the welding states is
masked by noise frequency. The separation signal u1 obtained by single-channel
BSS is the source signal of arc. Other source signals of environment and equipment
are filtered out. So the characteristics of high frequency (around 6 kHz) in the

(a) x-Mean  (b) u1-Mean   (c) x-Power                    (d) u1-Power

(e) x-Std        (f) u1-Std       (g) x-Xrms      (h) u1-Xrms

Fig. 8 Statistical characteristics of partial penetration and full penetration arc sound signal
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spectrum are highlighted. The statistical characteristic parameters, such as mean and
variance, etc. can well reflect the spectral intensity and characteristics. That is why
the characteristics mentioned above can be used to effectively identify the welding
penetration states as shown in Fig. 8.

5 Conclusion

The single-channel BSS method based on EEMD is proposed for arc sound signal
to reduce the environmental noises. In the proposed method, the single-channel
signal is decomposed into IMFs by EEMD. Then PCA is used to reduce the IMFs to
PCs. Finally, source signals can be separated from the principal components using
FastICA. The method’s efficiency was verified by simulation as well as real welding
arc sound signals. The main conclusions are summarized as follows.

(a) The simulated results show that the separated signals are basically consistent
with the source signals making up the mixed single-channel signal, but the
order and amplitude of separations are uncertain. Three separated source signals
are obtained from the collected single-channel arc sound signals. The sorted
separation signal u1 which has the largest correlation with the original arc sound
signal is the source signal of arc sound.

(b) Thirty groups of full penetration and partial penetration arc sound signals were
separated by this proposed method, the statistical characteristics of the spectrum
in the 5–6.5 kHz band were extracted from the separated signal u1. Eight
statistical characteristics such as the mean amplitude, energy, and so on, can
effectively distinguish the partial penetration from the full penetration. But, the
characteristics extracted from original signal are irregularly distributed, and
cannot distinguish the different penetrations.

(c) The source signal of arc sound can be effectively separated from single-channel
signal by the single-channel BSS. After that, the frequency domain character-
istics indicating welding conditions become more obviously. High-quality
welding arc sound signals are provided for state detection.
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