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Abstract A robot self-learning grasping control method combining Gaussian
process and Bayesian algorithm was proposed. The grasping gesture and parameters
of the robot end-effector were adjusted according to the position and pose changes
of target location to realize accurate grasping of the target. Firstly, a robot
self-adaptive grasping method based on Gaussian process was proposed for
grasping training in order to realize modeling and matching of position and pose
information of target object and robot joint variables. The trained Gaussian process
model is combined with Bayesian algorithm. The model was taken as priori
knowledge and the semi-supervised self-learning was implemented in new grasping
region so that posterior Gaussian process model was generated. This method omits
the complex visual calibration process and inverse kinematics solves only with a
small group of samples. Besides, when the environment of grasping changes, the
previous learning experience can be used to perform self-learning, and adapt to the
grasping task in the new environment, which reduces the workload of operators.
The effectiveness of the robot self-learning grasping control method based on
Gaussian process and Bayesian algorithm was verified through simulation and
grasping experiment of UR3.
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1 Introduction

With maturation of robot technology in daily life, robots have entered people’s life
and production more and more frequently. In industrial production, it’s a quite
common application to operate manipulators to grasp target object such as trans-
porting goods, systemizing articles and assembling parts which contain the most
basic pick-and-place tasks. The grasp algorithm is also a major research hotspot in
present robot orientation [1-6]. In operation of robot grasping articles, the position
and pose of the grasped target object are usually not fixed. The self-adaptive
grasping should be completed by adjusting grasping posture of robot end-effector
according to position and pose of the target object.

According to different requirements for self-adaptive grasping of target object,
some studies have added tactile sensors at end-effectors. Based on implemented
encoding and decoding analysis according to contact information fed back by sen-
sors, the grasping effects have been evaluated and motion parameters of the robot
have been adjusted to complete favorable grasping [7-10]. In the Ref. [8], a prob-
abilistic learning method for evaluating the stability of the grasp has been proposed.
According to the tactile sensor feedback information, the performance of grasp is
evaluated, so that objects can be regrasped before attempting to further manipulate
them. In Refs. [9, 10], a hierarchical mechanism of two-step grasping is established.
In the first step, based on tactile feedback, a grasp stability predictor is trained by
supervised learning to predict performance of the grasp. In the second step, the
parameters of grasp action are finely tuned according to the tactile sensor feedback.
The methods above can improve adaptability of end-effector. However, it can only
realize self-adaptive grasping nearby working region of the end-effector, and the
posture adjustment by tactile perception is adverse to real-time grasping operation.

More studies have used visual sensors to obtain objects’ position and pose to
adjust the motion of robot and completed self-adaptive grasping of target object.
The research methods of using visual sensor are divided into analytical methods and
learning-based methods. Analytical methods use the image and depth information
of the observed objects to model reshaping and point cloud segmentation, and then
match a 3D model for each segmented object and analysis to obtain their pose
information. Combined with the physical characteristics of each operation object
and a grasp quality metric [11, 12], simulation would be performed in the physical
simulator. Ultimately, suitable action would be chosen to perform the adaptive
grasp of the objects [13—15]. However, the methods above have the following
defects: firstly, complete model parameters are needed to pre-model the grasping
objects which increase the workload. Secondly, it’s difficult for the present depth
and visual sensors to obtain complete model information and errors will easily
occur during model matching process. The error exists between simulation result in
simulator and actual operation result so that reliability of grasping algorithm will be
greatly degraded. Thirdly, these methods need visual calibration for depth visual
system of the robot. The traditional robot visual system calibration method has high
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requirements for professional knowledge and operating skills of working personnel
[16—18], which consumes more time.

In the study of learning-based methods, the deep-learning technology is used. By
constructing the deep-learning network, the mapping from images to action
parameters of robot is established. The entire training process does not require any
human intervention or model parameters and pre-modeling. Meanwhile, the cali-
bration of camera is omitted, and it has stronger generalization ability and
robustness. In Refs. [19, 20], manipulators collected data through self-supervised
learning and trained a large Convolutional Neural Network (CNN) to generate the
optimal grasping according to the visual information. In Ref. [21], CNN is trained
with LSTM. The network uses unlabeled data to perform an end-to-end learning
which established a predictor for estimating grasping effect. However, the appli-
cation of deep-learning and neural network technology in learning-based methods
requires a large number of training samples, and the training process is very
time-consuming. Meanwhile, a long time to collect samples and training will
increase wear and tear of hardware. How to get good learning effects through less
training samples is a question worthy of study.

The visual servo system combines robot control and vision together without the
need for pre-modeling and visual calibration [22, 23]. Indrazno [24] uses visual
servo to achieve adaptive position control of a 7-DOF robot. Thomas [25] uses the
visual servo to control the aircraft to complete the grasp action and the docking
action. In Ref. [26], visual servo controller combined with reinforcement learning is
applied to a mobile robot with a manipulator, which shows a good performance in
robust grasping tasks. The use of visual servo can achieve the robot to adapt to the
target object pose. However, the adjustment process of robot movement needs to
analyze and deal with the image continuously, which increases the computational
burden of the system and reduces the efficiency of the system.

In order to avoid solving the inverse solution and simplify the motion planning
process, some studies teach robot to complete the grasping task by demonstration.
In Ref. [27], the robot is taught to grasp different kind of objects by demonstration.
The grasp type and the thumb position of each demonstration are recorded as the
label of the corresponding grasp task. In Ref. [28], iterative learning is applied to
the robot adaptive grasping control. In the learning process, adding manual
adjustment of the robot’s operating parameters to the demonstration, the robustness
of the grasping control is increased. Ref. [29] proposed an object centred proba-
bilistic volumetric model used to combine the multimodal data in the demonstra-
tion. The feature extracted by this method is proved to be useful for segmentation of
the action phases and trajectory classification. In the process of demonstration, in
order to generalize the executable tasks and improve the adaptability of the grasp
task, it is particularly important to choose a mapping model from the observations
to the motion parameters. As a Bayesian learning method, Gaussian process method
(GPM) [30] can give robots the ability to learn the mapping function from the
samples. Only small group of samples are needed to complete the training of the
GPM and construct the nonlinear relation between the relevant variables. To solve
the problem of physical Human-Robot interaction, Ghadirzadeh [31] uses GPM to
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establish the map between state-action pair and the variation of observations. In
Ref. [32], in order to build a visual forward model, GPM is used to establish the
mapping relation between motor commands and image observations. The resear-
ches above show that GPM is a powerful tool for non-parametric and non-linear
regression.

In general, the requirements of environment for visual servo system are strict.
This means that if the relative position of the robot and camera slightly changes, or
if a grasping task is performed in a new and uncalibrated area, the accuracy of the
grasp will be poor. Having this problem, in the application process whenever the
environment changes, operators have to repeat the cumbersome calibration of visual
system, which is time-consuming and increase the workload of operators. As for the
GP method, under the circumstance of small sample size, it’s not enough to rely
only on GP probabilistic prediction model as it can obtain favorable generalization
ability only nearby training samples. When the grasping environment changes or in
a new region, the error also tends to increase. In order to adapt the GP model to the
changing environment and to expand the scope of adaptive grasping, Bayesian
method is adopted to combine with GPM as a self-learning algorithm.

A robot self-adaptive grasping algorithm based on Gaussian process was pro-
posed. The position and pose information of target object obtained through visual
grasping and corresponding robot joint variables were associated. It’s only neces-
sary to let the robot learn from demonstrated samples under small sample size
which omitted calibration of robot visual system and inverse kinematics solving.
Then the robot self-learning grasping control method based on Gaussian process
and Bayesian algorithm was presented to do semi-supervised self-learning grasping
in a new grasping region to generate the posteriori GP model, which improved
adaptability of robot grasping. Grasping experiment of UR robot proved that robot
self-learning grasping control method based on Gaussian process and Bayesian
algorithm was of favorable effect.

2 Self-adaptive Grasping Based on Gaussian Process

2.1 Task Modeling

When executing a grasping task, the robot needs to match its own joint angle
parameters and adjusts its motion according to position information of the target
object. Self-adaptive grasping model of the robot to the target object is generalized
as below:

f:0—a (1)

where o represents observations of target object, @ is the corresponding joint
coordinate, and f is mapping function from observation variable of the target object
to joint coordinate.
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It is assumed that is X = {x;,x2,...,x,} the sample set obtained through
demonstration, where x; = [a,-,o,-]T represents sample vector consisting of joint
variables and observations. Robot self-adaptive grasping process lies in learning
from sample set X to obtain mapping function f so that the robot can obtain the
corresponding joint coordinate a according to the observation o.

2.2 System Description

As shown in Fig. 1, the right part is experiment platform, left part is UR manip-
ulator of six degrees of freedom, and an industrial camera is fixed right above the
experimental platform. The camera optic axis is vertical with experimental plat-
form, and the object is located within visible scope of the camera on the experi-
mental platform. Two coordinate systems in the figure are respectively {B}
manipulator basic coordinate system and {7} tool coordinate system.

Within a certain training region, the target object is arbitrarily placed, the
industrial camera acquires pixel coordinates of the target location. The demonstra-
tion is then given, the most appropriate robot joint angle is selected so that the robot
end-effector can execute grasping task accurately. The robot joint and observation of
pixel coordinates of the target location are established as the sample sets. With
information from training sets, Gaussian process model is used to establish mapping
relation between the two sets. In the experiments, the robot completes the grasping
task through robot joint angle correspondingly predicted through Gaussian process
according to position information of target object obtained by the camera.

Xt Industrial Camera < 4 N
J Yr

Soft-Touch Gripper

T

_>YB [ ] ]
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Target Position | |Experiment Platform

J0yendruey

Ground

[ 1

Fig. 1 The platform of manipulator grasping
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2.3  Gaussian Process Model

GPM is a nuclear learning machine with probabilistic meaning, which can give a
probabilistic interpretation of the predicted output. GPM is based on the assumption
that the observations and predictions are subject to a joint normal distribution, then
the posterior distribution of the predictions would be obtained by solving the
covariance matrix of the observations and the input of the training set. GPM has
been applied to the regression and classification problems successfully [10, 11]. The
robot self-adaptive grasping method based on Gaussian process is as shown in
Fig. 2. The method has omitted calibration of visual system and inverse kinematics
solving. The robot needs to learn from samples to obtain parameters of Gaussian
process model.

Before data are obtained, it’s assumed that joint variable and observational
variable of the target object comply with Gaussian distribution with mean value p
and covariance matrix K:

h~ (1K) (2)
In the equation, h = [a, o]T represents vector consisting of observation and joint

variables. Sample set X = {x, x5, ...,x,} obtained through demonstration includes
measurement noise, and then:

x,-:h—i—s (3>

In the equation, ¢ represents Gaussian noise with mean value 0 and variance o2.
Posteriori distribution of multidimensional variables obtained through sample set

X is also Gaussian distribution:
p(h|X,0) = N(u.K + 21 ()

where 6 = { uwK, ai}. For sample set X, its marginal likelihood function is:

Fig. 2 Adaptive grasping

. Samples of
based on Gaussian process

demonstration

Parameters of model

r‘ S sian. H observations [Camer:
process

Joint coordinates - Target
of manipulator | position & pose
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p = (X|H,0) Hp (xil i, 0) = H (xilh:)p(hi|0) = P (5)

where P = H exp(—%),andr; = (x; — ﬂ)T(K—Fo‘%I)_l(x,- —u

\ /2n|K+021

Partial derlvatlves of mean value vector and covariance matrix of the model are
respectively solved through Eq. (5), derivatives are set as 0. The maximum like-
lihood estimation values of mean value vector and covariance matrix of Gaussian

process can be obtained respectively as below:

pZe ©

n

(K +621) = Cov([x1,%2, ..., %) (7)

2.4 Prediction of Joint Variables

The following is obtained by blocking vector and matrix of Gaussian process:

a K Kaa""azl K,
~N a n 8
ol e el ®

The robot obtains observation information o* of the target object from the
camera, and then corresponding conditional probability distribution of joint angle
a’ is:

p(a’lo”) = N(p;. Kyy) ©)

* -1 * * -1
where p;, = p, + Koo (Koo + O'ﬁl) (0 - ”0)» K,, =Ky — Koo (Koo + O%I) Ko

u; is mean value of joint angle matching new target location and it’s corre-
sponding to maximum probability of Gaussian distribution. K, is covariance
matrix of Gaussian distribution and it represents uncertainty of prediction result.
Grasping can be completed by the robot at maximum probability by driving robot
joint to reach u;.

As it’s not necessary to do visual system calibration and inverse kinematics
solving, Gaussian process directly associates robot joint variables and observational
variables of the target object. According to new observations, the robot joint angle
corresponding to position of the target object is predicted.
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3 Semi-supervised Self-learning Grasping Based
on Bayesian Algorithm

GP method performs well in the training region with only small dataset. The
method is of decent generalization ability. However, some errors may exist in this
method when it used for grasping beyond training region. In order to expand
effective grasping scope of manipulator, the Bayesian algorithm is adopted. The GP
model trained before is used as priori model which is then added into
semi-supervised learning process. New training samples are collected after grasping
training in new adjacent region through robot self-learning grasping so as to update
probability distribution of the whole Gaussian process. The posteriori probability
model is obtained.

As shown in Fig. 3, target position is randomly selected in new training region
as input of GP model. Based on Gaussian self-adaptive strategy discussed in
Sect. 2, the GP model is used as priori model to generate robot joint angle
parameters. In supervised learning process, the solution of the forward kinematic of
the manipulator is solved according to the joint angle. Then a posture evaluation
mechanism is used for feedback and fine adjustment of joint angle. After a rela-
tively reasonable terminal grasping posture is obtained, the manipulator will try
grasping, and the actual grasping position of end-effector is acquired. On the one
hand, joint angle parameters and corresponding actual grasping position are taken
as new samples in training region to update the training set. On the other hand,
according to actual grasping position and target location, grasping evaluation
mechanism is used for evaluation.

Bayesian Method
Updating training s
(Demonstrations Training set): D e (New samples
v Supervised learning

Gaussian process Gauss-m mlllt

adaptation prOcey angle

Mechanism of Actual

pose evaluation Position
Adjustment
Target position )——-ﬁ Mechanism of grasping %—

Fig. 3 Semi-supervised self-learning control method based on Bayesian method
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3.1 Semi-supervised Learning

During demonstrated sampling process, collected sample posture is set as fixed
posture. The gripper executes grasping from up to down in the direction vertical to
plane of the experimental platform as shown in Fig. 4. Zr axis of tool coordinate
system is parallel to and in reverse direction to Zg axis. Correspondingly, XtOr Yt
plane is parallel to XgOgYg plane. H is the height of grasping location of the target
object under {B} robot reference coordinate system. During semi-supervised
learning process, robot joint angle is generalized according to target location
through Gaussian process. In order to guarantee effectiveness of successful
grasping, final grasping posture of end-effector is made to approach posture in
demonstration samples as much as possible. Meanwhile, the height of grasping
location should approach height of end-effector in demonstration samples as much
as possible. Adjustment is completed through two iterative loops, and concrete
operation is as below:

According to pixel coordinate of objects in the new adjacent training region, the
self-adaptive grasping method based on Gaussian process in Sect. 2 is used to
predict joint angle vector mu; with maximum successful grasping rate. The D-H
modeling of the manipulator is implemented and joint angle vector g, is substituted
into forward solution formula of robot kinematics to obtain coordinate transfor-
mation matrix.

Industrial Camera < 4 N\

|

u S

Target Position Soft-Touch Gripper Experiment platform

J0yendruey

Ground

[ ]

Fig. 4 The pose of end-effector
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rni ri2 s px

T = 21 I I3 py
31 I3 133 p;
0 0 0 1

0, is used to express relationships between Zr axis in tool coordinate system and
axes of reference coordinate system. P represents displacement of origin of tool
coordinate system in direction of Zg axis under reference coordinate system.

7 — arccos(r3)
0. = |5 —arccos(ry) |; P=p.—H
7 — arccos(rs3)
where 0,; € [-2,%], i=0,1; 0,€[0,n, i=2.

According to obtained 0,, loop iteration A is implemented and robot joint angle

is adjusted.

=My +wazT

where g, is the robot joint angle, and w is correction coefficient matrix.
Termination conditions of iterative loop A are:

Execute loop A and enter loopB  |0,;| <9,i=0,1,2
Execute loop A else

After termination of iterative loop A, joint angle parameters with reasonable
grasping posture are obtained to do iterative loop B so as to adjust robot joint angle.

Mo = p, +W'P

where w' is correction coefficient vector of each joint angle.
Termination conditions of iterative loop B are:

Goto loop A |P|<hand |0, >0d,i=0,1,2
Execute loop B, |P|>h
End loop B, else

After termination of iterative loop B, joint angle parameters with both reasonable
grasping posture and grasping height are obtained. Execute grasping operation and
observe the grasping position of the gripper which is taken as new training sample
together with joint angle parameters. The training sets of GP are updated.
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3.2 Bayesian Algorithm

The Bayesian algorithm has been proposed to do modeling of grasping in new
training region. Main idea of Bayesian algorithm can be expressed by the following
equation:

_ p(X]6) - p(0)

p(01X) (%)

where p(0) is probability distribution of priori model, X is training sample, p(6|X)
is probability distribution of posteriori model and p(X) is boundary likelihood
which is solved through the following equation:

mm:/}@wmmw

Firstly, target position (x;,y,) is randomly selected in new training region as
input of GP model, and its output is predicted joint angle u. Through posture
evaluation and mechanism of adjustment, actual position (x,,y,) of gripper is
distributed nearby the target position, but it will not necessarily coincide with target
position. Actual position (x,,y,) and corresponding joint angle parameter are added
into training set as new samples. After enough samples in new training region are
obtained, posteriori Gaussian distribution containing new training region will be
established. The grasping evaluation mechanism is established according to actual
grasping location and joint angle parameters generated through posteriori model.
The termination conditions of posteriori model are defined. The evaluation function
is designed as below:

r= cV,eiiAd + V;, Ad = \/(-xa — xd)2 + (o — )’d)2

where ¢ represents whether manipulator goes through posture adjustment, ¢ = 0
means yes and ¢ = 1 means no, and extra bonus will be obtained when the robot
doesn’t need posture adjustment. V, is the reward value when deviation Ad is 0, 4 is
a sufficiently large parameter which can guarantee that e *A¢ converges to 0 when
Ad is great enough. V; is the reward value for a newly added sample.

Termination condition of model training is as below:

When R = 27:1 r; > K 1is satisfied, model training is terminated.

The self-learning algorithm is shown in following as Algorithm 1.
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Algorithm 1

Input: sample set of demonstration: X ={x . ,x

1 g 1u
cumulative reward R = 0; distribution of prediction: h = [a, 0]"~(u, K)
fort=1.2,...do
Vo € 0:a =, + Koo (Koo + 07D 7 (0" — po);
Loop A: (8,,P) =T(a)
if vi€{1,2,3}:16,| < §,then
end Loop A
else
a=a+wo?
Loop B: (68,,P) = T(a)
if |P| < hand3i€ {1,2,3}:16,;| > &, then
Goto Loop A
else if |P| = h, then
a=a+wP
else
end Loop B
execute a, obtain o’ in 0, then add X, = (0',@)" into X;

update the posterior distribution of h: p(h|X,8) = N(u, K + 621), where

2‘71:+txi _ T
po=2= 5(K+a§l)760v([x 10X e X, ] ;

n+t

7(0,0") = the reward of executingain O,R=R +r;
if R=YL1>x

end for

Output: new sample set X, new distribution of prediction h

X, }; observation space 0;

4 Simulation and Experiment

Simulation and experimental object is visual grasping platform based on UR3. UR3
contains 6 joint axes with high flexibility and operability. After new observational
variable 0* is obtained, the trained GP model is used to calculate joint a* which the
robot needs to reach so as to realize robot self-adaptive grasping of the target object.

4.1 Simulation of Control Method

Gaussian self-adaptive grasping

Simulation uses Robotic Toolbox in MATLAB. Firstly, demonstration of the robot
is performed, corresponding joint angle is input so that the gripper will grasp the
object in vertical direction. Meanwhile, the certain grasping height is ensured so
that gripper can grasp the target successfully. The robot joint angle and pixel
coordinate of the gripper after coordinate transformation are recorded as training
samples. They are input into the training sample set of GP model. In the simulation,
13 pixels’ coordinates are uniformly collected in training region, and training data
are shown in Table 1. After training samples are obtained, maximum likelihood
estimations of mean value vector g and covariance matrix (K +aﬁl) of GP are
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obtained through Eqs. (6) and (7). New observation and robot joint comply with the
same probability distribution. When there is new observation input o*, joint angle
u;, which allows the robot complete grasping at maximum probability can be solved
through Eq. (9).

Distribution of training sample points and test sample points inside pixel plane is as
shown in Fig. 5. The left green dotted box expresses the training region and the
right red dotted box expresses untrained one. Blue points are training samples
uniformly collected, and the other points are test samples. The results of grasping
are judged according two rules. First, the distance from gripper and target location
should be small enough. When the distance is smaller than 10 mm, it can be
considered as a successful grasp. Second, height of gripper should be appropriate.
In the simulation, when height of gripper is equal to 69 £ 4 mm, it can be con-
sidered that grasping is successful. Based on the two rules, the green points in the
figure are successful samples. The yellow points express samples with too large
deviation of grasping distance. The red points express samples with inappropriate
grasping height.

As shown in Fig. 5, most test points in the training region can be successfully
grasped. It can be seen that under small sample size, Gaussian process model has
considerable performance in the training region. However, test points nearby
boundary of training region and those beyond training region almost failed to grasp,
and grasping effect is unsatisfying. Therefore, Gaussian process model relies on
priori samples and has poor performance under the circumstance in which there are
no priori samples.

Table 1 Training data from demonstration

Num | Observations Corresponding joint angle (rad)
Pixel x |Pixel y |Base Shoulder |Elbow | Wrist 1 | Wrist 2 | Wrist 3

1 239 88 -0.134 | -1.730 -2.022 |-0.965 |1.573 0.007
2 347 88 0.003 |—1.661 -2.103 |-0.951 |1.574 0.145
3 455 87 0.149 | —1.609 —2.161 |-0.944 | 1.575 0.291
4 455 191 0.130 |—1.768 -1.976 |-0.970 |1.574 0.271
5 347 192 0.003 |—-1.810 —-1.920 |-0.985 |1.573 0.145
6 239 192 -0.118 | —1.868 -1.841 |-1.008 |1.572 0.023
7 239 297 —0.105 |-2.004 -1.639 |-1.073 |1.571 0.036
8 347 297 0.003 |—1.953 -1.717 |-1.045 |1.572 0.144
9 454 296 0.116 |—1.917 -1.772 | -1.026 |1.573 0.257
10 401 244 0.062 |—1.861 -1.852 |-1.003 |1.573 0.204
11 293 245 -0.055 |-1.907 —-1.785 |—-1.024 |1.572 0.086
12 293 140 -0.062 | —-1.767 -1.977 |-0.973 |1.573 0.079
13 401 140 0.071 |—-1.712 —2.045 |-0.958 |1.574 0.212
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Distribution of Training and Testing Sample on Pixel Plane
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Fig. 5 Distribution of training and testing samples on pixel plane

Self-learning grasping

It’s assumed that in new training region, probability distribution which observations
and robot joint angles subject to is identical with that in the previous one. The
trained GP model is taken as priori model, 12 test sample points are uniformly
collected in new training region. The obtained joint angle and grasping errors are
shown in Table 2.

Table 2 shows that in new training region, all test points failed to grasp. The
average grasping error is 25.4 mm and maximum deviation reaches as high as
49 mm. Grasping height of more than 1/3 test points do not meet requirement.
Then, self-learning is implemented in the new training region, and steps are as
below:

Table 2 Test samples in new training region

No. |Pixel |Pixel |Height | Error |Base | Shoulder |Elbow | Wrist1 | Wrist2 | Wrist 3
X y
1 560 88 63.3 1526 |0.253 | —1.568 -2.232 |-0912 |1.576 |0.395
2 668 88 60.2 29.77 |0.378 |—1.518 -2.299 | -0.895 |1.577 |0.521
3 777 87 56.5 49.08 | 0.505 | —1.465 -2.369 | —0.877 |1.578 0.647
4 776 191 65.7 39.40 |0.503 |—1.610 |—-2.176 |—0.924 | 1.577 |0.645
5 668 192 67.8 21.63 |0.378 |—-1.662 |—2.107 |—0.942 |1.576 |0.520
6 560 192 69.2 8.86 [0.252 | —-1.713 —2.041 | -0.960 |1.575 0.394
7 561 297 70.5 11.38 | 0.253 |—1.859 |—1.847 |—1.007 | 1.574 |0.394
8 668 297 70.7 22.44 10.377 |—-1.809 |—-1.914 |—-0.990 |1.575 0.519
9 776 296 70.4 38.83 |0.503 | —1.757 -1.982 | -0.972 |1.576 |0.644
10 | 722 244 69.3 28.64 |0.440 | —1.709 | —-2.045 |—-0.957 |1.576 |0.582
11 |e6l15 245 70.2 14.02 |0.316 | —1.761 —1.977 | -0.975 |1.575 0.458
12 |614 140 65.8 17.57 |0.315 |—1.615 -2.170 | -0.927 |1.576 |0.457
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1. Test samples are selected in new training region, and robot joint angles are
obtained according to previous GP model.

2. In simulation, forward kinematic solution is solved according to joint angles.
Iterative loop will be performed and joint angles will be adjusted if it’s judged
the posture or height is inappropriate. Then, go to the next step.

3. Corresponding pixel coordinates of the gripper are observed and recorded.
which will be taken as new samples together with newly obtained robot joint
angles. Input new samples into the training set of GP so as to update the whole
distribution.

4. Reward value is calculated and updated, and it’s judged whether self-learning
training is completed. If it’s judged that it’s not completed, then return to 1, or
otherwise, end the loop.

During learning process, the generated new samples are input into training set of
GP so as to update the whole distribution. As shown in Fig. 6, the first row is
distribution of predicted values of 6 joint angles in new training region when new
training samples are not added. The second row is distribution after 6 new samples
are added. The third row is distribution after 12 new samples are added. With
increase in the number of new samples, distribution of robot joint angles changes.
Reward value reaches threshold value through test sample point collection and
updating of posteriori model for 12 times so that self-learning training is completed.

After self-learning of grasping, 100 sample points ate randomly tested in the new
region, and distribution of test results is shown in Fig. 7. In the new training region,
83% test sample points can be successfully grasped. 14% test sample points failed
to grasp because of deviation of position, where distance etrors of 11% samples are
within 10~ 15 mm. 3% samples failed to grasp because their grasping height is
wrong. On the whole, posteriori GP model after self-learning has favorable effect in
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Fig. 6 Variation of the distribution of manipulator’s joints
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Distribution of Testing Sample on Pixel Plane in New Region
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Fig. 7 Distribution of test samples in new region after self-learning

the new training model. Furthermore, most fail samples are distributed far away
from training sample points. This conforms to characteristics of GP model. In the
region with concentrated samples, the prediction performance is good, and in the
region with sparse samples or being far away from samples, the performance of
prediction tends to be poor.

4.2 Experiment

The experimental platform is shown in Fig. 8a, the camera is placed above the
platform. Target object is a colored block on the table. UR3 is selected as
manipulator and is arranged at left side of the platform. SRT soft gripper is selected
as end-effector. The soft gripper is of adaptivity to the shape of grasping object,
which improves grasping success rate and contributes to training effect. Camera
selected in the experiment is MV-EM200C/M and resolution is 1600 x 1200.

In the experiment, firstly GP model is trained. Profile extraction and calculation
of central point of the target object are implemented through industrial camera,
image processing interface is as shown in Fig. 8b. The pixel coordinates of central
position of target object (green wood block) are obtained as observations o(x, y).

Demonstration is implemented through manual operation, robot joint angles are
adjusted, the end-effector is set to approach the target object in reasonable posture,
robot joint angle a is recorded when successful grasping is ensured, and observations
and joint angles are taken as training samples of GP model. Similar to simulation, 13
sample points are collected as training samples, and then maximum likelihood
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Fig. 8 Experiment of grasping task: a experimental platform; b acquiring observation variables of
target object

estimation values of mean value vector u and covariance matrix (K + 031 ) of GP are
obtained through Eqs. (6) and (7). Training data are shown in Table 3.

Green wood blocks are randomly placed in training region, and 12 samples
points are tested. The distribution of training samples and test samples are shown in
Fig. 9. Blue points are training samples which are uniformly collected in training
region. Green points are successful samples and red points are failed samples.
Similar to the simulation, most test samples can be successfully grasped, several
failed samples are located at edges of training region. In general, in the training
region, self-adaptive grasping of GP has decent performance result. However,
similar to simulation, beyond the training region, previous GP model is tried for
estimation to generate joint angles result, and nearly all test samples failed to
grasp. GP model has poor performance in the region without prior knowledge.

Table 3 Training data from demonstration

No. | Observations Corresponding joint angle (rad)
Pixel x |Pixel y |Base Shoulder | Elbow Wrist 1 | Wrist 2 | Wrist 3

1 240 455 -0.092 |-2.220 -1.239 |-1.271 1.573 6.188
2 346 455 0.001 |-2.171 -1.324 |-1.233 |1.575 6.281
3 453 454 0.096 | —-2.136 -1.382 |-1.208 |1.577 0.093
4 453 559 0.088 | —2.304 -1.092 |-1.331 1.576 0.085
5 347 559 0.002 |-2.340 -1.026 |-1.362 |1.574 6.281
6 240 559 —0.083 | —2.395 -0.925 |-1410 |[1.572 6.196
7 241 667 -0.076 | —2.650 -0.455 |-1.620 |1.571 6.204
8 347 670 0.002 | —2.564 -0.620 |—-1.530 |[1.573 6.282
9 454 663 0.082 |[-2.514 -0.701 |-1.513 |1.575 0.078
10 400 611 0.043 | -2.418 -0.883 |—1.427 |1.574 0.040
11 294 612 —0.039 | —2.469 -0.787 |—-1.474 |1.573 6.240
12 293 507 -0.043 | -2.276 -1.142 |-1312 |1.574 6.236
13 400 507 0.047 |—-2.233 -1.218 |-1.277 |1.576 0.043
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Fig. 9 Distribution of training and testing samples on pixel plane

Self-learning training is carried out according to simulation steps, subsequently,
green blocks are randomly placed in new training region, and 250 samples are
tested, and test results are shown in Table 4. Among 250 experimental tests, the
number of successful grasping is 194 occupying 77.6% which is slightly lower than
in simulation. That is possibly caused by errors of camera and precision of
manipulator. Among unsuccessful samples, samples with deviation of grasping
location occupy 12.4% which constitute the main type of unsuccessful grasping.
Blocks are successfully grasped but drop during movement process of manipulator,
it belongs to unsafe grasping situation, and this occupies 6.4%. The situation of
nothing grasping or gripper touching experimental platform due to wrong grasping
height occupies 3.6%. In general, after self-learning, posteriori GP has favorable
performance result in the new training region.

Table 4 Grasping test in The result of grasping No. Proportion
experiment -
Successful grasping 194 77.6%
Grasp wrong position 31 12.4%
Unstable 16 6.4%
Grasp wrong height 9 3.6%
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5 Conclusion

Robot self-adaptive grasping strategy based on Gaussian process was proposed.
The pose and position information of the target object obtained through visual
grasping and corresponding robot joint variables were associated. On the condition
that only a small sample size was needed, the robot was made to learn from artificial
demonstration samples. The robot self-learning grasping method based on Gaussian
process and Bayesian algorithm was presented. The robot could use previous
Gaussian process model as priori model to implement self-learning grasping in the
region without prior knowledge, training scope of Gaussian process model was
expanded and adaptability of robot grasping was improved. This method omits the
complex and time-consuming calibration of visual system. Besides, choosing
similar results with the demonstration samples, it does not need to solve the inverse
kinematic and the optimal solution which improves the efficiency of grasping.
When grasping environment changes, the previous learning experience can be used
as priori knowledge. The self-learning is able to complete the grasping task in new
environment in relative high success rate without repeating calibration process,
which reduces the workload of operators.
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