
Reconfigurable Distributed Controller
for Welding and Assembly Robotic
Systems: Issues and Experiments

Alan Maldonado-Ramirez, Ismael Lopez-Juarez
and Reyes Rios-Cabrera

Abstract Industrial production systems for smart factories or the so-called Industry
4.0 will demand high interoperability and connectivity between production mod-
ules, so that modules could be monitored in real-time. Production modules should
make decisions on their own without human intervention; and they must be
modular and adaptive to changing circumstances and customers’ requirements. The
autonomous operation of production modules in smart factories imposes asyn-
chronous delays due to several reasons, such as object recognition time, grasping
time or welding delays that change due to a newly reoriented or positioned com-
ponent. Consequently, production modules need to be speeded up to compensate
for the delays in the previous production stages. In this paper, we present a novel
Reconfigurable Distributed Controller (RDC) for Intelligent Robotic Welding and
Assembly Systems that autonomously compensate the production delays. The
proposed RDC compensates for three types of major production delays that affect
the total production time. (I) The first delay can occur at individual level. In this
case, the module can fully compensate, since no other modules are affected and the
total production time for this product can be met. (II) The second type of delay
occurs at inter-module level, where delays are so long that more than one pro-
duction module will need to be reconfigured. (III) Finally, the third type of delay
occurs in the worst-case scenario when the total production time cannot be met by
modifying individual module’s production time. A total cell reconfiguration is
needed, which implies to speed up the next production cycle to deliver the fol-
lowing product before its deadline. By doing so, the mean production time is
maintained. In this paper, issues and experiments that show the feasibility of the
RDC are presented. Results of using a distributed reconfigurable manufacturing cell
composed of three industrial robots, conveyor belts, and a positioning table
demonstrated the effectiveness of our approach to compensate the major delays in
real working environments.

A. Maldonado-Ramirez � I. Lopez-Juarez (&) � R. Rios-Cabrera
Robotics and Advanced Manufacturing, CINVESTAV—IPN,
Ramos Arizpe 25900, Mexico
e-mail: ismael.lopez@yahoo.co.uk

© Springer Nature Singapore Pte Ltd. 2019
S. Chen et al. (eds.), Transactions on Intelligent Welding Manufacturing,
Transactions on Intelligent Welding Manufacturing,
https://doi.org/10.1007/978-981-10-8740-0_2

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8740-0_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8740-0_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8740-0_2&domain=pdf

Keywords Reconfigurable distributed control � Smart factories
Intelligent robot welding � Intelligent robot assembly

1 Introduction

The advances of science and technology are continuously supporting the
improvement of the daily products and services, and manufacturing technology is
not the exception. All these developments have led to the so called fourth industrial
revolution or industry 4.0 with the introduction of the smart factories and the
Internet of Things (IoT) paradigm.

As the complexity of the manufacturing system grows, due to the inclusion of
robots, CNC machines, conveyor belts, sensors and other equipment, the manu-
facturing cell requires more flexible control strategies that are not reachable with a
Programable Logic Controller (PLC) as the central control element. On the other
hand, a distributed control system, where all the hardware and software components
connected, it improves the communication and coordination of all the elements
through the passage of messages to achieve a common goal.

The introduction of the DCS allows the implementation of flexible and versatile
control strategies. By using intelligent production schedulers, we can compensate
perturbations caused by asynchronous faults, without limiting the working capacity
of the manufacturing cell. It can also implement on-line fault correction technics
and control schemes for intelligent specialised modules such as assembly robots
with force-torque sensing and a welding robot with learning skills.

In order to develop a manufacturing system based on the Industry 4.0 and IoT
strategies, it is necessary to use equipment compatible with high level communi-
cations schemes. For this project, we use KUKA Industrial Robots able to com-
municate via ethernet with the TCP/IP protocol, high speed wireless networks
routers, GigE industrial cameras and high specs micro-computers.

The organization of this paper is as follows. Section 2 present the most relevant
related work and original the contribution of this paper. Sections 3, 4 and 5 describe
the communication framework, the computer vision specialised module and the
distributed architecture of our flexible manufacturing system. Section 6 gives a
detailed explanation of the experimental work carried out in a real manufacturing
cell integrated by industrial equipment, as well as the performance results of our
methods. Finally, Sect. 7 provides the conclusion and the envisage future work.

2 Related Work

One of the core parts of this work was the definition of a communication frame-
work. Since there are many ways to establish an open communication with a robot
controller, one of the most popular interfaces is the Robot Operating System

30 A. Maldonado-Ramirez et al.

(ROS) [1]. Unfortunately, KUKA industrial robots do not fully support ROS yet.
A solution to this problem was found in Ref. [2]. There authors propose a server
called KUKAVARPROXY and JOpenShowVar, and it has several advantages such
as the low cost, flexibility, reliability and integrability.

In terms of Industry 4.0 and the IoT paradigm, the most important characteristics
of a smart factory are the mass production customization, flexibility,
self-reconfiguration of the working elements. It is also important the global
knowledge of the manufacturing system status, in order to optimize the decision
making in a real-time monitored supply chain [3]. Industry 4.0 is also related to the
concept of cloud manufacturing. This is a model that is service oriented, customer
centred and demand driven. In Refs. [4, 5] the authors explored the potential future
of this manufacturing model and how it can be implemented to automation and
industrial control systems with a strategic point of view based on the cloud

The introduction of the cloud manufacturing model, implies the design of
optimal scheduling algorithms. In Ref. [6] a multi-objective optimization
scheduling model was introduced to improve the production efficiency of a
reconfigurable assembly line, particularly balancing the production load and min-
imizing the delayed workload.

In Ref. [7] Georgios et al. described the application Information Technologies
such as design and manufacturing. They also examined the use of cloud computing
in the mechanical drawing and design process of an enterprise. It proposes a
specific architecture with different servers, for the implementation of a collaborative
cloud-based Design system. It also compares the operating cost of an industry’s
design department before and after the use of the proposed system. However, this
paper focuses mainly on software and interactions but not on real manufacturing
cells.

In Ref. [8] Pei et al. dealt with the problem of jobs characterised by non-identical
sizes, different release times and unequal processing times. The objective is to
minimise the makespan by making batching and sequencing decisions. The authors
formalized the problem as a mixed integer programming model and they showed
the problem to be strongly NP-hard. Some structural properties are presented for
both the general case and a special case. The main focus of the paper is algorithmic.
In Ref. [9] it is investigated the coordinated scheduling problem of production and
transportation in a two-stage supply chain, where the actual job processing time is a
linear function of its starting time. They considered that in the production stage the
jobs are first processed in serial batches on a bounded serial batching machine at the
manufacturer’s site. The main contribution is the development of an optimal
algorithm to solve the problem of minimizing the makespan. However, the real
implementation is not part of the scope of the paper.

As the mass production customization arises, so does the necessity to implement
reconfigurable manufacturing systems. In contrast to the traditional manufacturing
systems RMS can change their components, structure and interactions over time in
order to rapidly change its production mode to manufacture different items from the
same family. In Ref. [10] the authors presented a formal modelling and analysis
method to describe the behaviour and verify the reconfiguration of an RMS.

Reconfigurable Distributed Controller for Welding … 31

The concept of smart factories does not only include the characteristics listed
above. It also includes the incorporation of smart processes, such as a specialised
intelligent assembly module as reported in Ref. [11], where the authors employed a
force-torque sensor to provide important contact information to a neural controller
dedicated specifically to that assembly task. Industry 4.0 can also include intelligent
welding modules with learning skills such as the proposal of Ref. [12].

In Ref. [13] an architecture for a flexible manufacturing system was presented.
This integrated a distributed control system, endowing some of the working ele-
ments with reconfiguration capabilities. This work also included a production
controller with scheduling algorithms such as Early Deadline First and Deferrable
Server. However, this system was limited in its reconfiguration capabilities.

2.1 Original Contribution

The aim of this paper is to introduce a novel architecture of a Flexible
Manufacturing System. Our proposal includes a Reconfigurable Distributed
Controller implementing a fault correction algorithm, capable of compensating the
production delays. We also proposed a communication framework superior to
Ref. [2], based on a C++ JOpenShowVar variation, allowing easy integration of
new modules to the manufacturing system. Our proposal meets the Industry 4.0 and
IoT paradigms, endowing the system with full-reconfiguration capability.

3 The Client/Server Implementation

There are many ways and protocols to establish a communication between different
devices. If we use computers, the most common method is the TCP/IP protocol.
This type of computer networks and communication protocol allow different
applications to communicate with each other, and the parts can be used to achieve a
common goal. If the application consists of two or more parts running on different
devices and communicate with each other to solve a common task over a computer
network, it is called a distributed application.

The implementation of a distributed application grants a series of benefits
compared with an application run on a single computer, as showed in The
Distributed Architecture Sect. 5. Particularly for a manufacturing system, it allows
the development of Distributed Control Systems (DCS). In order to program our
client/server applications, the open source libraries of Boost.Asio for C++ were
used.

In general, there are 2 important communication protocols in network pro-
gramming, the TCP protocol and the UDP protocol. Each one of them have dif-
ferent characteristics suitable for a particular type of application. In the case of our
distributed application we opted to use the TCP protocol for the following reasons:

32 A. Maldonado-Ramirez et al.

• It guarantees delivery of the message, including error handling mechanisms in
the case of a failure in the communication.

• It establishes a point-to-point communication model.
• Before the communication can take place over a TCP protocol, a logical con-

nection must be established by exchanging service messages.

3.1 The Client Application

To develop the client application, there are two options:

• A synchronous TCP client.
• An asynchronous TCP client.

The synchronous TCP client waits until it gets a response from the server, while
the asynchronous one can execute another action while it waits for the server
response. In our particular application, the time that it takes the client to send a
request and to process the server response, is very fast. This is because the amount
of data sent was designed to be small. For this reason there is no need to execute
parallel actions while the client is waiting for a response. Therefore we decided to
use the synchronous TCP client.

3.2 The Server Application

In terms of server applications, they can be classified according to the way they
serve clients. Focusing only on the synchronous servers they can be:

• An iterative TCP server.
• A parallel TCP server.

An iterative server can only serve one client request at the time, while the
parallel one can process more than one client request, making use of multi-thread
programming techniques.

The distributed application focused in our work consist on many servers and
clients. That is why it was necessary to implement servers able to handle many
clients at the same time. For this reason, the parallel TCP server was chosen.

The Boost.Asio libraries used are multi-platform and we were able to program
all client/server applications on Raspberry Pi microcomputers. Each module was
configured to be in charge of controlling a specialised task, in the distributed
manufacturing system, sharing its information through the communication network.

Reconfigurable Distributed Controller for Welding … 33

4 The Computer Vision Specialised Module

In smart manufacturing, of the most important aspects to take into account are the
sensors. The introduction of different kind of sensors in a manufacturing system
provides the controllers with valuable external information to make important
decisions.

The sight sense is one of the most important senses of humans, since it provides
information about the surroundings such as:

• Extract position, orientation distance and size of objects.
• Know if an element is static or moving.
• Compare characteristics between a set of objects.
• Among others.

To ensure that these skills in a manufacturing system can be achieved, we must
rely in the usage of cameras. Including computer vision in a specialised module
allows more flexibility for robotic tasks such as handling, welding, assembling,
among others. It can also help to minimise errors caused by a badly located element
and it also allows quick modifications to the manufacturing process without pro-
gramming changes.

In our specialised module, we integrate the advantage of the current industrial
technology in computer vision, combined with or own developed programs based
on open source solutions. Technologies such as the GigE Vision camera standard
and the Pylon SDK developed by Basler AG to create camera applications together
with computer vision libraries from OpenCV.

It orders to detect and grasp objects, it was necessary to design and create our
own manufacturing tools for the industrial robots. We made use of Rapid
Prototyping Technologies to 3D print our tool models in order to test them in the
manufacturing system. Figure 1 shows our designed gripper, and the location of the
camera.

Fig. 1 Developed gripper for
handling and assembly tasks
and the camera is located near
the grasping area

34 A. Maldonado-Ramirez et al.

This gripper (Fig. 1) was developed for a KUKA industrial robot to execute
handling and assembly tasks aided by computer vision. An important aspect of
using the GigE Vision industrial standard is that it allows us to get access to camera
information remotely within the local network to process it, in the computer vision
specialised module, or any other available module.

With the computer vision specialised module, we can perform image processing
online in a remote computer, extract the valuable information from the image and
then share it with the robot for it to execute different tasks (grasping, moving,
welding, assembly, etc.). Figure 2 shows an example of extracting coordinates of
the piece centroid and orientation angle, for the robot to perform a grasping action.

Running this module on a remote CPU in a local network, it grants the
advantage of easy integration to a distributed manufacturing system. This feature is
mainly achieved by the utilisation of GigE vision industrial standard and the
Basler AG Pylon SDK to create our own client/server application to access the
camera information.

5 The Distributed Architecture

Flexible Manufacturing Systems can be divided into 2 types of distributed
architectures:

• The Distributed Control System (DCS).
• The Manufacturing Tasks Distribution.

These two types of distribution are highly valuable in the future of manufac-
turing systems. The use of a DCS increases the reliability and security of opera-
tions, not depending in just one central controller but in a network of controllers
that can performed the supervising function in case of failure.

In our platform, each module or working elements can fulfil the same series of
tasks or functions (redundancy in functions). Therefore, the manufacturing process

Fig. 2 Centroid and
orientation extraction of a
sample object, and an
industrial robot uses this
information to perform
different tasks

Reconfigurable Distributed Controller for Welding … 35

can be distributed in a network of working elements. This distribution in the
manufacturing process implies advantages such as:

• Reduction in the production time.
• Relieve in specific production task in order to avoid bottlenecks.
• Scheduled maintenance to specific elements without stopping the production.

In the next subsections, a detailed explanation of these two distributed archi-
tectures is given.

5.1 The Distributed Control System Hardware

The development of embedded computers and the increasing power of this
microcomputers able of internet connection, is pushing forward the implementation
of Internet of Things (IoT) technologies in many areas, particularly in the Industry
4.0. The utilisation of microcomputers in the control of a manufacturing system
grants the capability to implement more complex production strategies, such as
dynamic scheduling with real-time decision-making algorithms that contemplate
the system status the whole time.

In order to get a distributed control system that does not depend on PLCs we can
develop applications in C++, Java or any other programming language able to run
on embedded computers.

Since our flexible manufacturing cell is mainly integrated by KUKA industrial
robots, we opted to develop the communication framework based on the open
source KUKAVARPROXY server application. With this server application running
on each of the robot controllers, we can read/write system variables as well as user
defined variables. With this, we can translate the whole robot control to a smart
distributed module.

As shown in Fig. 3 a client application is programmed in a Raspberry Pi
microcomputer in order to supervise the robotic system status. In this microcom-
puter, we can also include a production controller and a decision-making algorithm
based on the full system status.

For the DCS, a network of microcomputers is established with a client/server
communication framework. The principal function of this computers is to control
each of the modules of the flexible manufacturing system (welding, assembly,
milling, handling, computer vision and conveyor belts) as shown in the Fig. 4.

Each microcomputer is connected to the local network running a client/server
application. In this way, all the computers can share the status of their corre-
sponding specialised modules. This is a very important feature of the DCS, because
here lies the reliability, in the network of controllers. Knowing the status of each
microcomputer, in the case of a server failure, its supervising function can be
relieved to another microcomputer in the network, as shown in Fig. 5.

36 A. Maldonado-Ramirez et al.

The introduction of a DCS with the reliability advantages that it grants, does not
exclude the need of a human supervising function. For this reason, it is important
the design of a Human–Machine Interface (HMI) to provide the user with the most
valuable information about the system status.

The HMI shown in Fig. 6 was designed to help a human with the supervision of
the whole manufacturing cell. This HMI shows the individual status of each of the
specialised modules and allows the user to configure the production parameters.

Fig. 3 KUKAVARPROXY communication framework and the robot control can be performed in
the distributed module

Fig. 4 Distributed control system structure

Reconfigurable Distributed Controller for Welding … 37

5.2 The Manufacturing Tasks Distribution

As mentioned before, if we want to make a truly reliable distributed manufacturing
cell, it is required to have modules that can fulfil the function of not only one
specialised module. In our case, we need to enable robots to execute more than one
task. We defined four: handling, welding, assembly and milling.

Fig. 5 Failure in a microcomputer of the DCS

Fig. 6 Designed HMI to control the distributed manufacturing system

38 A. Maldonado-Ramirez et al.

Our current experimental platform is integrated by 3 KUKA industrial robots:
KUKA KR16, KUKA KR60 and KUKA KR16HW. Each of these robots can
execute a different set of functions as shown in Table 1.

This robot capability to execute a different set of tasks, allows us to test the
distribution of procedures in the manufacturing process that implies assembly,
milling, handling or welding.

This distribution of tasks provides 2 key features.

Intelligent Production Controllers.

The first benefit is the capability to implement intelligent production controllers to
optimize the manufacturing time. This means, the manufacturing process will not
be a strict steps sequence that must be executed by a specific robot, but a dynamic
process where any of the available robots can perform different steps of the man-
ufacturing process.

For example, let’s consider a simple manufacturing process with the next
sequence:

The raw material enters the production line.

• Milling process.
• Assembly process.
• Welding process.
• Finished product.

Now, in the traditional production line this process would be performed by 3
robots where each one of them would execute one step from 2 to 4, as shown in
Fig. 7. In this approach, the system is sensitive to the delays that may occur in the
specialised modules, giving rise to bottlenecks in the production line.

Table 1 Set of functions per
robot

Robot Functions

Assembly Milling Handling Welding

KR60 Y Y Y –

KR16HW Y – Y Y

KR16 Y Y Y –

Fig. 7 Traditional continuous production line

Reconfigurable Distributed Controller for Welding … 39

The focus or our proposal aims to give a solution to this kind of problems with a
distribution of tasks. In order to avoid the bottlenecks in the manufacturing line, the
global production controller takes into account the status of the whole system to
assign the task to any of the available robots, as shown in Fig. 8.

Robustness to Major Module Failure.

The second important advantage is the robustness to major module failure. Similar
to the distributed control system where a computer in the network fails, another one
relieves its supervising functions, if a robot fails in the distributed manufacturing
system, the production could still continue, because another robot can relieve the
pending tasks.

This feature may not only apply in case of failure but also for scheduled
maintenance when a particular element of the production chain must be stopped.
Taking the same example of Fig. 8, if the robot R1 with the assembly and milling
functions is stopped, the robot R2 can accomplish the same tasks and continue with
the production.

In our proposal all these characteristics of flexible manufacturing system are
achievable based on the proposed communication framework. Our DCS running on
microcomputers capable of monitoring the status of the entire system and a
dynamic production controller suited to modify the distribution of task according to
the acquired knowledge of the system status.

5.3 The Fault Compensation Algorithm

Unlike the classical manufacturing systems where each step in the process is strictly
coordinated to start and finish in a specific time in a rigid structure, the application
of intelligent modules implies the existence of non-deterministic processing times
in the specialized functions.

Fig. 8 Distributed tasks in
the production line

40 A. Maldonado-Ramirez et al.

As a third part of the distributed architecture, a fault compensation algorithm is
included in this work. The main function of this algorithm is to change dynamically
the working speed of each individual element of the manufacturing system in order
to compensate the existence of delays due to failures or non-deterministic pro-
cessing times.

This algorithm is based on the previous knowledge of the mean execution time
for each of the task that are involved in the manufacturing process and the minimum
execution time that can be achieved by increasing the working speed of every task.

With the aid of the DCS described before, the execution time measurement of all
the tasks can be easily done. And with the database of the mean execution times it is
possible to identify in which task a delay has occurred. It is also important to
consider a limit in the increment of the working speed to avoid undesired effects in
the manufacturing process. In this context, the algorithm function is to speed up, in
a safe way, the incoming task after the delay, until it is fully compensated. After that
the system continues at is nominal speed, as described below:

if DT >0 then

if DT > MC then

Vel = Max_value

DT = DT – MC

else

Vel = vsf(DT)

end if

else

Vel = DEFAULT

end if

where DT is the accumulative delay time in seconds; MC is the maximum time
compensation in a task; Vel is the working speed of a module; vsf(DT) is a velocity
selection function according to the delay time.

This function works with the database that describes the velocity/time rela-
tionship of the evaluated task.

6 Experiments

The experiments to validate the proposed Distributed Control System and the task
distribution controller with the Fault Compensation Algorithm where carried out in
the Intelligent Manufacturing Laboratory from CINVESTAV Campus Saltillo,
showed in Fig. 9. The experimental platform used for experimentation is integrated
by:

Reconfigurable Distributed Controller for Welding … 41

• 1 KUKA KR16 Robot with KRC2 controller.
• 1 KUKA KR16HW Robot with KRC4 controller.
• 1 KUKA KR60 Robot with KRC4 controller.
• 1 KUKA DKP400 2 DoF table.
• 1 KUKA KL1000-2 linear unit
• 1 Fronius TPS4000 welding module.
• 4 Raspberry Pi 3 microcomputers.
• 3 Basler Aca1300-gc GigE cameras.
• 3 Hytrol conveyor belts.

All this equipment is connected to the local area network in order to implement
the DCS. The mentioned robots are equipped with the corresponding tools to
execute the specialised functions described in Table 1.

In order to test the intelligent manufacturing cell at its full capacity, the
experimental product shown in Fig. 10 was designed. The manufacturing process of
this product implies handling, milling, assembly and welding tasks that will be
carried out by the 3 different robots. This is, the KR60 robot picks the working
piece from the first conveyor belt then takes it to a working area where it mills the

Fig. 9 Intelligent manufacturing laboratory CINVESTAV Saltillo

Fig. 10 Designed
experimental product

42 A. Maldonado-Ramirez et al.

holes. After that, this robot takes the milled piece to the second conveyor belt,
where the KR16HW will pick it up and place it on the DKP400 positioner. The
KR16 robot will go to warehouse, pick the cylinders and assembly them in the
milled piece on the DKP400. The KR16HW will continue with the welding pro-
cess, fixing the cylinders to the milled piece. At the end, the KR16 will pick the
finished product from the DKP400 and place it on the third conveyor belt.

In a general way, the manufacturing process of this product is integrated by 22
task, that are listed in Table 2 with its corresponding mean execution time and the
maximum time compensation that can be achieved with the working speed
adjustment.

From Table 2 we can see, that the mean production time of one product is
218.268 and the maximum delay that can be compensated is 104.208 s in a full
production cycle, corresponding to the 47.74% of the total manufacturing time. As
it can be inferred, as the production process advance, the delay time that can be
compensated is reduced, leading to the next 3 study cases:

• Module Reconfiguration: This happens when a delay has been detected in one
task, and the same module where the delay occurred can fully compensate it.

Table 2 Manufactuing process description

Task Robot µT (s) MaxCompensation

1. Go to CB1 KR60 9.72 4.716

2. Pick from CB1 KR60 18.912 9.168

3. Go to working area KR60 7.284 3.492

4. Milling KR60 16.92 8.16

5. Pick from working area KR60 16.92 8.16

6. Go to CB2 KR60 12.624 6.168

7. Place in CB2 KR60 18.816 9.168

8. Return to home position KR60 12.672 6.192

9. Go to CB2 KR16HW 7.332 3.516

10. Pick from CB2 KR16HW 8.304 3.888

11. Go to DKP400 KR16HW 7.356 3.516

12. Place in DKP400 KR16HW 18.552 8.82

13. Go to warehouse KR16 4.776 2.232

14. Pick cylinder from warehouse KR16 8.304 3.888

15. Go to DKP400 KR16 4.812 2.268

16. Assembly KR16 7.512 3.48

17. Welding KR16HW 17.388 8.004

18. Pick from DKP400 KR16 7.548 3.516

19. Return to home position KR16HW 6.672 3.192

20. Go to CB3 KR16 8.268 3.996

21. Place in CB3 KR16 8.712 4.08

22. Return to home position KR16 8.208 3.972

Reconfigurable Distributed Controller for Welding … 43

• Inter-Module Reconfiguration: When the delay is longer than the compen-
sation that one single module can execute. This reconfiguration speeds up the
next modules to complete the compensation.

• Inter-Production Reconfiguration: As the worst-case scenario, this happens
when the delay is larger than the entire system time compensation or the delay is
detected in one of the last steps in the manufacturing process. In this case the
system will not be able to compensate the delay to deliver the finished product in
time, so it will speed up the next production cycle to deliver the next product
before time, to keep the mean production time.

6.1 Module Reconfiguration, Minor Delay in KR60
Computer Vision

This is the first case study, where a minor delay is detected in one of the first task of
the KR60 robot. For this we are simulating a minor failure in the computer vision
specialised module that tells the robot where to pick up the working piece from the
first conveyor belt in the step number 2 of the manufacturing process. The applied
delay was of 21.408 s in the mentioned task, assuming that it was the time for the
computer vision specialised module to find the working piece and extract the
position and orientation for the robot to pick it up.

Figure 11 shows how after the 21.408 s delay detected in the task number 2, the
tasks from 3 to 5 speed up to compensate most part of the delay, and then the tasks

Fig. 11 Module reconfiguration, the delay shown in red, speeded up tasks in green

44 A. Maldonado-Ramirez et al.

from 6 to 22 are fulfilled at the mean task time. Table 3 shows detailed information
about the times, delay, and compensation time from task 1 to 8 that corresponding
to the KR60 task to show the module reconfiguration principle. At the end, the
system could not compensate 1.812 s, corresponding to the 8.46% of the total delay
or to the 0.83% of the total production time. Nevertheless, the fault compensation
algorithm minimized a delay of 8.46% from the total time to a 0.83%.

6.2 Inter-module Reconfiguration, Deterioration
in the KR60 Milling Tool

This is the second study case, where a major delay is detected in the milling task of
the KR60. For this, we are simulating a delay caused by the deterioration of the
milling tool of the KR60 robot. This deterioration requires the robot to take a longer
time to fulfil the task number 4 of the manufacturing process. For this experiment to
test the inter-module reconfiguration the measured delay was of 51.144 s.

In Fig. 12 it can be seen how after the detected delay of 51.44 s in the task
number 4 corresponding the milling operation of the KR60, the tasks from 5 to 16
were speeded up in order to compensate the whole delay. The inter-module con-
figuration is observed, because tasks from 5 to 8 correspond to the KR60 robot, and
from 9 to 16 correspond to the KR16HW and KR16 robot. Another thing that can
be noticed in this experiment is that the fault compensation algorithm does not
increase the speed of the tasks that do not contribute to the delay reduction, such is
the case of the task number 8, KR60 returning to its home position, because the
finishing of that task is not related with the start of task number 9. The corre-
sponding compensation times for each robot are shown in Table 4. In this case we
can see from the table that the algorithm made an over compensation of 2.916 s to
finish the product in 215.352 s.

Table 3 Module
reconfiguration times

Task µT (s) Actual time
(s)

Dt (s) Compensation
(s)

1 9.72 9.72 0 0

2 18.912 40.32 21.408 0

3 7.284 3.792 17.916 −3.492

4 16.92 8.76 9.756 −8.16

5 16.92 8.76 1.596 −8.16

6 12.624 12.624 1.596 0

7 18.816 18.816 1.596 0

8 12.672 12.672 1.596 0

Reconfigurable Distributed Controller for Welding … 45

6.3 Inter-production Reconfiguration,
Welding Parameters Change

As the last study case, where a major delay is detected in the welding operation of
the KR16HW. This case contemplates the inter-module reconfiguration because it is
a major delay, but also it happens in one of the last tasks in the manufacturing
process. For this, we are inducing a delay “caused” by the change in the welding
parameters, such as the path velocity of the robot in the welding seam is changed.
This change requires the KR16HW robot to take a longer time to fulfil the task
number 17. In order to test the inter-production reconfiguration a delay of 59.796 s
will be applied to task number 17.

As this is a major delay that was detected in one of the last steps in the man-
ufacturing process, the fault compensation algorithm will not be able to fix the
delay in the current production cycle, so it will have to speed up the task of the new
production cycle in order to keep a constant production rate of 1 product each
218.268 s. All this behaviour is shown in Fig. 13 and Table 5. In Fig. 13, the first

Fig. 12 Inter-module reconfiguration, delay shown in red, speeded up tasks in green

Table 4 Inter-module reconfiguration times

Task µT (s) Actual time (s) Dt (s) Compensation (s)

KR60 101.196 128.844 51.144 −23.496

KR16HW 58.932 39.756 21.408 −19.176

KR16 58.14 46.752 17.916 −11.388

Total 218.268 215.352 51.144 −54.06

46 A. Maldonado-Ramirez et al.

graphic represents the production times of the first item, where we can see that from
task 1 to 16 the execution times correspond to the mean times, in the task 17 the
59.796 delay is detected, and the algorithm tries to compensate the delay in tasks
18–22. Because there are only 5 tasks left to finish the first product, the algorithm
could only compensate 8.076 s, leading to a total production time for the first
product of 269.988 s, this means a delay of 51.72 s with respect to the 218.268
mean production time. So, at the beginning of the next production cycle, the system
will try to compensate this delay in the first tasks, as it is shown in the second
graphic of the Fig. 13. It can be seen that the algorithm compensates the previous
production cycle delay at task number 8. With this speed up of the manufacturing

Fig. 13 Inter-production reconfiguration, the delay shown in red, the speeded-up tasks in green

Table 5 Inter-production reconfiguration times

Product 1

Task µT (s) Actual time (s) Dt (s) Compensation (s)

KR60 101.196 101.196 0 0

KR16HW 58.932 118.728 59.796 0

KR16 58.14 50.064 59.796 −8.076

Total 218.268 269.988 59.796 −8.076

Product 2

Task µT (s) Actual time (s) Dt (s) Compensation (s)

KR60 101.196 52.368 51.720 −48.828

KR16HW 58.932 59.148 3.108 0.216

KR16 58.14 55.908 3.324 −2.232

Total 218.268 167.424 51.720 −50.844

Reconfigurable Distributed Controller for Welding … 47

process, the total production time of a second product is reduced to 167.424,
50.844 s below the mean production time. This way the algorithm keeps the mean
production rate in 218.706 s per product, just 0.20% above the previous known
production rate.

7 Conclusion

Every system is prone to failures, and manufacturing systems are no exception. The
existence of failures implies delays in specific points in the manufacturing process.
The main characteristic of a failure is that it can happen at any time and its duration
is not defined. For all this, it is very important to have fault compensation strategy
capable of monitoring at every moment if a delay has occurred in order to com-
pensate it as fast as possible.

The proposed fault compensation algorithm together with the Distributed
Control System detailed in this work, show how a delay correction can be made
when a failure occurs. This correction can be achieved in 3 ways, depending on
how severe the delay caused by the failure was. If the delay was short and can be
compensated in a single module, a module reconfiguration takes place. Otherwise if
the delay cannot be compensated by a single module, an inter-module reconfigu-
ration is executed. And if the delay last long enough or happens in one of the last
tasks of the production process, an inter-production reconfiguration is carried out.

In order to correctly implement the fault compensation algorithm, a previous
knowledge of the manufacturing process is needed, to know how much time can be
compensated in every task, and which tasks do not contribute to the reduction of the
delay.

The experimental results of the tests carried out in the Intelligent Manufacturing
Laboratory of CINVESTAV Saltillo, show the efficiency of the proposed dis-
tributed architecture and the fault compensation algorithm, implemented on a
production process performed by industrial equipment such as manipulator robots,
welding systems, milling tools and conveyor belts. The most important character-
istic that the algorithm is capable of fulfilling is to keep the mean manufacturing rate
in a production line as close as a specific known value, compensating the existence
of delays due to failures or parameter changes in the working modules.

In this stage of our research, the experimental section included only delay times
in the modules. However, future evaluations will be carried out for the case of a
total robot failure and how another robot can re-take the task to compensate the
production.

Ongoing work is currently being carried out, improving the robustness of the
algorithm. Developing also a fully IoT scheme, connecting all the equipment to
the cloud in order to control it from outside, capable of sharing information of the
whole system with other manufacturing systems to coordinate production and
transportation schedules. Work is also being developed to include safe strategies for
human–robot interaction to execute task together within the manufacturing system.

48 A. Maldonado-Ramirez et al.

References

1. Quigley M, Conley K, Gerkey B et al (2009) ROS: an open-source robot operating system.
ICRA Workshop Open Source Softw 3(3):5

2. Sanfilippo F, Hatledal LI, Zhang H et al (2015) Controlling Kuka industrial robots: flexible
communication interface JOpenShowVar. IEEE Robot Autom Mag 22(4):96–109

3. Shrouf F, Ordieres J, Miragliotta G (2014) Smart factories in Industry 4.0: a review of the
concept and of energy management approached in production based on the internet of things
paradigm. In: 2014 IEEE international conference on industrial engineering and engineering
management, vol 1, Bandar Sunway. IEEE, pp 697–701

4. Wu D, Greer MJ, Rosen DW et al (2013) Cloud manufacturing: strategic vision and
state-of-the-art. J Manuf Syst 32(4):564–579

5. Tang H, Huang Q, Zhang M et al (2014) Dynamic resource scheduling system with cloud.
Mech Eng Autom 6:4–6

6. Yuan M, Deng K, Chaovalitwongse W et al (2017) Multi-objective optimal scheduling of
reconfigurable assembly line for cloud manufacturing. Optim Methods Softw 32(3):581–593

7. Georgios A, Georgios F, Bouzakis KD (2015) Collaborative design in the era of cloud
computing. Adv Eng Softw 81:66–72

8. Pei J, Liu X, Pardalos PM et al (2016) Solving a supply chain scheduling problem with
non-identical job sizes and release times by applying a novel effective heuristic algorithm.
Int J Syst Sci 47(4):765–776

9. Pei J, Pardalos P, Liu X et al (2015) Serial batching scheduling of deteriorating jobs in a
two-stage. Eur J Oper Res 244(1):13–25

10. Yu Z, Guo F, Ouyang J et al (2016) Object-oriented petri nets and p-calculus-based modeling
and analysis of reconfigurable manufacturing systems. Adv Mech Eng 8(11):1

11. Navarro-Gonzalez J, Lopez-Juarez I, Rios-Cabrera R et al (2015)On-line knowledge acquisition
and enhancement in robotic assembly tasks. Robot Comput Integr Manuf 33:78–89

12. Aviles-Vinas JF, Rios-Cabrera R, Lopez-Juarez I (2016) On-line learning of welding bead
geometry in industrial robots. Int J Adv Manuf Technol 83(1):217–231

13. Benitez Perez H, Lopez Juarez I, Garza Alanis PC et al (2016) Reconfiguration distributed
objects in an intelligent manufacturing cell. IEEE Latin America Trans 14(1):136–146

Reconfigurable Distributed Controller for Welding … 49

