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Abstract Combining human welder (with intelligence and sensing versatility) and
automated welding systems (with precision and consistency) can lead to next
generation intelligent welding systems. This paper aims to present a data-driven
approach to model human welder hand movement in 3-D, and use the learned
model to control automated Gas Tungsten Arc Welding (GTAW) process. To this
end, an innovative virtualized welding platform is utilized to conduct teleoperated
training experiments: the welding current is randomly changed to generate fluctu-
ating weld pool surface and a human welder tries to adjust the torch movements in
3-D (including welding speed, arc length, and torch orientations) based on the
observation on the real-time weld pool image feedback. These torch movements
together with the 3-D weld pool characteristic parameters are recorded. The weld
pool and human hand movement data are off-line rated by the welder and a welder
rating system is trained, using an Adaptive Neuro-Fuzzy Inference System
(ANFIS), to automate the rating. Data from the training experiments are then
automatically rated such that top rated data pairs are selected to model and extract
“good response” minimizing the effect from “bad operation” made during the
training. ANFIS model is then utilized to correlate the 3-D weld pool characteristic
parameters and welder’s torch movements. To demonstrate the effectiveness of the
proposed model as an effective intelligent controller, automated control experiments
are conducted. Experimental results verified that the controller is effective under
different welding currents and is robust against welding speed and measurement
disturbances. A foundation is thus established to learn human welder intelligence,
and transfer such knowledge to realize intelligent welding robot.
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1 Introduction

GAS Tungsten Arc Welding (GTAW) is the primary process used for precision
joining of metals [1]. In this process (shown in Fig. 1) an arc is established between
the non-consumable tungsten electrode and the base metal. The base metal is melted
by the arc forming a liquid weld pool that joins the two pieces of base metal
together after solidification. The shielding gas is fed through the torch to protect the
electrode, molten weld pool, and solidifying weld metal which may be contami-
nated by the surrounding atmosphere. Automated GTAW systems may produce
repeatable results by accurately controlling the joint fit-up and welding conditions
to reduce possible process variations but at high costs while the resultant weld
quality may still not always be assured. Welding process monitoring and control for
automated welding machines thus have been extensively studied in the past few
decades [2–10]. Various sensing and control techniques have been proposed,
including pool oscillation [2, 3], radiography [4, 5], thermal [6, 7], and vision
[8–10] based sensing and control. In particular, the weld pool geometry is believed
to provide valuable insights into the state of the welding process. Important
information such as weld defects and weld joint penetration are contained in the
surface deformation of the weld pool [10]. Recently an innovative vision-based 3-D
weld pool sensing system for GTAW process was developed in the Welding Lab at
University of Kentucky [11]. The weld pool was further characterized by its width,
length and convexity instead of a large set of 3-D coordinates. The weld penetration
and weld pool surface have thus been accurately controlled [9, 10, 12]. To ensure
such an ideal closed-loop control performance, however, the control algorithm
(structure) needs to be carefully designed per the process dynamics. The ability to
develop an appropriate control algorithm requires control system design experience
and solid understanding of process dynamics.

Besides conventional modeling and control methodology based on welding
process inputs/outputs, human welder intelligence based modeling and control [13]

Fig. 1 Illustration of GTAW

4 Y. Liu and Y. Zhang



provides an alternative route to develop welding process control algorithms. It is
inspired by the fact that in manual GTAW process human welders can appraise the
welding process based on their observations on the welding process to adjust
welding parameters to adaptively overcome the effects due to variations in
the welding conditions. Learning human welder response and transferring such
intelligence to the welding robot thus would provide a convenient method to take
advantage of valuable human welder experience and utilize the accurate execution
of the robot to exceed human physical limitations [14, 15]. The resultant intelligent
welding robots may also help resolve the skilled welder shortage issue the manu-
facturing industry is currently facing [16]. Moreover, the design of the control
algorithm becomes a one step process—modeling human welder’s response as
function of feedback from the sensor. The design thus becomes simpler and less
designer dependent.

The main welding parameters in GTAW that human welders tend to control
include welding current and speed, arc length, and torch orientations, etc. Both
welding current and speed can significantly affect the heat input into the welding
process and thus influencing the weld pool surface geometry and weld penetration
considerably [10]. Arc length also has certain impact on welding arc’s penetration
capabilities. Because the welding current in GTAW is controlled by the constant
current power supply, an increase in the arc length results in an increase in the arc
voltage and arc power. However, the distribution of the arc energy is decentralized
such that the efficiency of the arc and the penetration capability might decrease
consequently. Torch orientations are also considered to be correlated to the weld
quality and appearance. Inappropriate torch manipulations may cause weld defects
including undercut, porosity, and cracks. In [13–15], welding current has been
controlled where the pipe rotates and the torch is always on 12 o’clock (i.e., 1G
welding position). However, in many pipe welding applications the pipe stays
stationary during welding and the welding torch moves along the weld joint (i.e.,
5G welding position) [17, 18]. In this case welders choose a pre-defined welding
current and move the torch along the pipe. The movements of the torch (i.e. the
welding speed, arc length, and torch orientations) are thus controlled by the human
welder as main sources to compensate for possible process variations. Different
control algorithms have been proposed to control the welding process by adjusting
the welding speed, either through traditional system identification/controller design
approach [19], through directly modeling human welder response [20, 21], or a
combination of the two approaches [22]. Although these algorithms have demon-
strated certain success in controlling the welding process by adjusting the welding
speed, the limitation of the single input (i.e., welding speed) needs to be relaxed.
Actually, in manual GTAW process, the human welder can perform welding
operations freely in 3-D space. It indicates that for an intelligent welding robot that
can mimic or even outperform human welder, it should be able to control the
welding process by operating the welding torch freely in 3-D space. The key
challenge in learning human welder decision making for intelligent welding robot
development thus lies in the availability of such unique ability that allows the
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human welder to perform naturally and freely in 3D space while still can monitor
the inputs (weld pool surface) and outputs (adjustments on welding parameters) of
the decision process [23].

This paper utilizes a recently developed virtualized welding platform [24, 25] to
perform welder teleoperation experiments, proposes an ANFIS based data-driven
approach to model the human welder’s adjustments in 3-D, and transfers this model
to the welding robot to perform automated welding. The remainder of the paper is
organized as follows. In Sect. 2 experimental system is described and human
motion is analyzed. In Sect. 3 training experiments are conducted in which human
welder adjustments together with 3-D weld pool characteristic parameters are
recorded. The experimental data are also presented in this section. An automated
welder rating system is trained in Sect. 4, and “good responses” are selected. Linear
model and ANFIS model are used to correlate the torch movements and the weld
pool characteristic parameters in Sect. 5. To verify the robustness of the proposed
intelligent model, automated welding experiments under varying welding currents
and speed disturbance are conducted and the results are analyzed in Sect. 6.
Conclusions are finally drawn in Sect. 7.

2 Experimental System and Human Hand
Motion Analysis

2.1 Experimental System Set-Up

In this subsection the teleoperation based virtualized welding platform is briefly
introduced. This system is illustrated in Fig. 2a together with the experimental
setup [24]. It consists of two workstations: welding station and virtual station. In
virtual station a human welder can view the mock up where the weld pool image
feedback is displayed and moves the virtual welding torch accordingly as if he/she
is right in front of the work-piece. The human welder movement is accurately

Fig. 2 a General view of the virtualized welding system; b virtual welding torch
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captured by a Leap motion sensor, and the obtained virtual welding torch (Fig. 2b)
3-D coordinates and orientations will be sent to the PC. Leap sensor is an advanced
motion sensor which is utilized in this study to accurately capture the human
welder’s adjustments on torch movement. It can track fingers or similar items to a
spatial precision of 0.01 mm [26].

The welding station consists of an industrial welding robot, stainless steel pipe,
and a compact 3-D weld pool sensing system [24]. The robot utilized in this study is
Universal Robot UR-5 with six Degree of Freedom. The robot arm equipped with
the welding torch receives commands (next robot tool pose including robot tool 3-D
positions and orientations) via Ethernet from the PC, executes the command and
sends the current robot tool position back to the PC. Figure 3 depicts a detailed
view of the 3-D weld pool sensing system as well as weld pool characteristic
parameters [11]. Camera 2 (eye view camera) captures the weld pool image and
sent it back to the PC (a sample image is shown in lower left). A low power laser
(19 by 19 structure light pattern) is projected to the weld pool surface and its
reflection from the specular weld pool surface is intercepted by an imaging plane
and imaged by a CCD camera (Camera 1 in Fig. 3a). It is known that arc light is an
omni-directional light source. Its intensity decreases quadratically with the distance
traveled, but the laser, due to its coherent nature, does not significantly lose its
intensity. Hence, it is possible to intercept the reflection of the illumination laser
from the weld pool surface with an imaging plane placed at an appropriate distance
from the arc. From the distorted reflection pattern on the imaging plane and the
assumption of a smooth weld pool surface, the 3-D shape of the weld pool surface
can be obtained. By using specific image processing and reconstruction algorithms
[11], 3-D specular weld pool can be reconstructed in real-time (a sample recon-
structed weld pool is shown in lower right).

2.2 Human Hand Motion Analysis

Human hand motion consists of both deterministic and stochastic movement. By
utilizing the leap motion sensor, fine human hand movement can be accurately
detected and recorded. However, it is not clear when the teleoperation training
experiments are conducted, what types of human hand motion should be followed
by the robot. If the stochastic and high frequency human hand tremor or large
movement is transferred to the robot, the robot tracking performance cannot be
guaranteed.

To analyze the human hand motion, ten experiments are conducted where
human welder moves the virtual welding torch along the mock-up pipe, and his/her
movement is recorded by the leap sensor. Figure 4 depicts human hand motion in a
sample experiment. It is seen that human moves the virtual welding torch along
x axis (i.e., welding direction), from −20 to 20 mm (corresponding to about −20° to
20° relative to the vertical direction). Sudden movements along z axis (i.e., arc
length) are also observed. For example, from 42 to 43 s, movement along z axis
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fluctuates between −8 and 8 mm. This type of movement is considered as noise and
should not be followed by the robot. Movement along y axis (perpendicular to the
welding direction) should be following the shape of the weld seam. For our
application which is pipe welding along a straight line, y coordinate should keep
constant (0 mm in this study). However, from Fig. 4 it is observed that y coordi-
nates vary from −2 to 3 mm. This is expected because the human welder movement
includes the stochastic part, thus can’t be accurately controlled like the welding
robot. RX movement, i.e., rotation along the welding direction ranges from −4° to
6° in this sample experiment. For automated welding machines, RX is normally kept

Fig. 3 a Detailed view of the 3D weld pool sensing system; b weld pool characteristic parameters
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perpendicular to the pipe surface. For manual welding process, however, this
rotation along the welding direction is controlled by the human welder. RY, i.e.,
rotation perpendicular to the welding direction, ranges from −4° to 4° with certain
fluctuations. RZ, or rotation along the welding torch, does not affect the welding
performance and is thus not considered in this study. To summarize, four human
movements are considered: X, Z, RX, RY, which correspond to the welding speed,
arc length, orientation along and perpendicular to welding direction, respectively.
Figure 5 plots the histograms for these four movements in ten experiments.
Figure 6 depicts the Power Spectral Density (PSD) in these experiments. It is
observed that coordinate and orientation along welding direction (X and RX) have
smaller variation in PSD than Z and RY movements. The following low-pass filter is
proposed to filter the human hand motion:

mi;f ðkÞ¼ ai;f mi;f ðkÞþ ð1� ai;f ÞmiðkÞ ð1Þ
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Fig. 5 Histograms for human adjustments in ten experiments
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where mi;f ðkÞ; i ¼ 1; . . .; 4 is the filtered movement for X, Z, RX and RY at instant k,
ai;f is the corresponding filtering coefficient, and miðkÞ is the measured movement
at instant k.

From Fig. 6 it is observed that different filtering coefficients should be applied
for different movements. In this study ai;f ¼ ½0:1; 0:7; 0:15; 0:5�, selected based on
each movement’s PSD variances (varðPSDiÞ ¼ ½19:2; 98:6; 11:9; 67:5�). In the next
section, teleoperated training experiments are conducted where the filtered human
motion is tracked by the welding robot, and the experimental data are presented/
analyzed.

3 Training Experiments and Data Analysis

3.1 Training Experiments

In the training experiments pipe welding is performed using the direct current
electrode negative GTAW process. The welding position is 5G (i.e., the pipe stays
stationary during welding, and the welding torch moves along the weld joint). The
material of the pipe is stainless steel 304. The outer diameter and wall thickness of
the pipe are 113.5 and 2.03 mm, respectively. Seven training experiments are
performed by a human welder to model the correlation between the weld pool
characteristic parameters (weld pool width, length, and convexity) and human hand
movements. In these experiments the welding current is randomly changed from
40 to 48 A resulting in a fluctuating weld pool surface. The welder adjusts the
movement based on the weld pool image feedback; the adjustments (X, Z, RX, and
RY) are measured by leap sensor, filtered using Eq. (1), and sent to the robot. The
robot follows the welder’s movement and completes the welding task. Other
experimental parameters are detailed in Table 1. Three weld pool characteristic
parameters are selected as the system inputs, which are considered as the major
sources a human welder perceives to complete the welding tasks. Four human
welder movements are the system outputs. The sampling frequency in this study is
3 Hz because the welder controls the torch movement by observing the weld pool
and is thus a relatively slow process.
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Fig. 6 Normalized PSDs for human adjustments in ten experiments
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Figure 7 shows the robot tracking performance in a sample training experiment,
and Fig. 8 depicts the front-side and back-side weld bead in this experiment.
Acceptable tracking performance is achieved in all four movements. It is noted,
however, that certain human hand movements are not perfectly tracked, especially
in RX and RY. Accurate tracking performance is challenging when the human
makes large movement, which will be authors’ future research.

Figure 9 plots the welder’s movement adjustments, and weld pool characteristic
parameters (weld pool width, length, and convexity) in seven training experiments.
As can be observed, the human welder manipulates the virtual welding torch
accordingly based on the weld pool geometry he/she perceives. In the next sub-
section, data analysis is performed and the importance of each movement is
compared, which will be utilized to construct the welder rating system in Sect. 4.

3.2 Data Analysis

To evaluate each human hand movement’s impact on the weld pool characteristic
parameters and consequent weld penetration (characterized by its back-side bead
width), linear modeling is conducted. The following first order Auto Regression
Moving Average (ARMA) model is proposed:

Wk ¼ aWWk�1 þ
P4

j¼1 bW ;juj;k�1 þ cW
Lk ¼ aLLk�1 þ

P4
j¼1 bL;juj;k�1 þ cL

Ck ¼ aCCk�1 þ
P4

j¼1 bC;juj;k�1 þ cC

8><
>: ð2Þ

where Wk; Lk;Ck are the weld pool width, length, and convexity at instant
k. uj;k�1; j ¼ 1; . . .; 4 are the welding speed S, arc length A (relative to 4 mm),
rotation adjustment along welding direction RX(relative to the normal of the pipe
surface), and rotation perpendicular to the welding direction RY , respectively. a; b; c

Table 1 Experiment parameters

Welding parameters

Current/A Welding speed/mm/s Arc length/mm Torch orientations/° Argon flow
rate/L/min

40–48 – – – 11.8

Monitoring parameters

Project angle/° Laser to weld pool distance/mm Imaging plane to weld pool
distance/mm

31.5 24.7 101

Camera parameters

Shutter
speed/ms

Frame rate/fps Camera to imaging plane distance/
mm

2 10 57.8
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Fig. 8 Front-side (a) and
back-side (b) weld bead in the
sample teleoperation learning
experiment in Fig. 7
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are the model parameters associated with each model. These parameters can be
identified using standard least squares method. The identified models are:

Wk ¼ 0:3Wk�1 þ 0:04Sk�1 þ 0:05Ak�1 � 0:04RXk�1 þ 0:01RYk�1 þ 4:2
Lk ¼ 0:6Lk�1 þ 0:2Sk�1 þ 0:08Ak�1 � 0:08RXk�1 þ 0:03RYk�1 þ 2:6
Ck ¼ 0:01Ck�1 � 0:06Sk�1 þ 0:04Ak�1 þ 0:004ðRXk�1 þRYk�1Þþ 0:4

8<
: ð3Þ

The corresponding steady state models are:

Ws ¼ 0:059Ss þ 0:066As � 0:053RXs þ 0:008RYs þ 5:99
Ls ¼ 0:56Ss þ 0:18As � 0:18RXs þ 0:06RYs þ 5:93
Cs ¼ � 0:059Ss þ 0:042As þ 0:004ðRXs þRYsÞþ 0:42

8<
: ð4Þ

Based on authors’ previous study [27], the following steady state model between
the back-side bead width and pool parameters can be expressed as:

Wbs ¼ 0:9Ws � 0:45Ls þ 1:27Cs þ 1:7 ð5Þ

where Wbs is the back-side bead width in steady-state.
Substituting Eqs. (4) in (5), we have:

Wbs ¼ �0:27Ss þ 0:03As þ 0:04RXs � 0:01RYs þ 4:96 ð6Þ

This steady-state correlation indicates that when the welding speed increases, the
back-side bead width decreases. This makes sense because an increase in the welding
speed decreases the heat input into the process and the penetration is thus reduced.
Comparing the impact between four welder movements, it is observed that the
welding speed, arc length, rotations along and perpendicular to the welding direction
contribute to the back-side bead width with percentages of [76.4, 8.6, 11, 4%],
respectively. It is thus concluded that the welding speed adjustment has dominant
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contribution to the weld penetration, but welder adjustment in arc length and torch
orientations also contribute to the weld penetration to some extent. In the next section,
the normalized coefficients (i.e., [0.764, 0.086, 0.11, 0.04]) will be utilized to form the
welder rating system.

4 Welder Rating System

Because the limit of the welder’s skill, the real-time adjustments depicted in Fig. 9
might contain certain amount of “bad operation”. However, only “good response”
should be utilized to form the human response model. In this section, a welder
rating system is constructed, and “good response” is selected as the data pairs for
the human response modeling process detailed in Sect. 5. As a preparation,
Neuro-fuzzy and ANFIS modeling technique is briefly reviewed, which will then be
utilized in forming the welder rating system and human response model.

4.1 Neuro-Fuzzy and ANFIS Modeling

Neuro-fuzzy approach (i.e., the fusion of the NNs and fuzzy logic) determines the
parameters in fuzzy models using learning techniques developed in neural networks
[28], and has been successfully applied in various areas [13–15, 29–31]. Jang [29]
developed ANFIS by using a hybrid learning procedure. It possesses the advantages
of adaptive rule changing capability, fast convergence rate, and does not require
extensive experiences about the process to construct the fuzzy rules. A typical fuzzy
rule in a Sugeno-type model has the form [28]:

IF x isA and y isB; then z ¼ f ðx; yÞ ð7Þ

where A and B are fuzzy sets, and z = f(x, y) is a linear function.
ANFIS can construct an input–output mapping in the form of Sugeno type

if-then rules by using a hybrid learning procedure [29]. A fuzzy logic control/
decision network is constructed automatically by learning from the training data.
The membership function (MF) adopted in this study is generalized bell MF
specified by three parameters [27]:

Ajiðpj; aji; bji; cjiÞ ¼ 1

1þ pj � cji
� �

=aji
�� ��2bji ð8Þ

where pj is the fuzzy variables and aji; bji; cji are the input fuzzy membership
function parameters.

For a given set of input variables (for example p1, p2, and p3), the following rule
is implemented [29]:
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Rule i1; i2; i3ð Þ : IF p1 is A1i1; p2 is A2i2; and p3 is A3i3;

Then y i1; i2; i3ð Þ ¼ d1 i1; i2; i3ð Þp1 þ d2 i1; i2; i3ð Þp2 þ d3 i1; i2; i3ð Þp3 þ d0 i1; i2; i3ð Þ
ð9Þ

where dj’s are the consequent parameters.
The final output of the fuzzy model is [29]:

y ¼
X2
i1¼1

X2
i2¼1

X2
i3¼1

wði1; i2; i3Þyði1; i2; i3Þ ð10Þ

where wði1; i2; i3Þ is the weight representing the truth degree for the premise: p1 is
A1i1, p2 is A2i2, and p3 is A3i3, and is expressed by the following equation:

wði1; i2; i3Þ ¼
Y3
j¼1

Ajik ðpjÞ ð11Þ

The output Eq. (10) together with the weighting Eq. (11), membership function
(8), and the fuzzy rule (9) form an ANFIS model. Its model parameters aji; bji; cji
and dj’s can be identified using the Matlab ANFIS toolbox.

The following two criteria are proposed to evaluate the performance of the linear
and ANFIS models. The model average error is defined as:

Eave ¼ 1
n

Xn
k¼1

ŷk � ykj j; ðk ¼ 1; . . .; nÞ ð12Þ

where n is the number of data points, yk is the measurement at instant k, and ŷk is
the model estimation.

The root mean square error (RMSE) is calculated by:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
k¼1

ðŷk � ykÞ2=n
s

ð13Þ

4.2 Automated Welder Rating System

To better distill the correct response of the human welder, the human welder
evaluates the measured data (including the welding current, weld pool characteristic
parameters) and corresponding back-side weld penetration, then assigns a rating
(from 0 to 10) in each 5 s interval. (Assigning a rating is an off-line process
requiring no real-time operation/control and is thus much less skill demanding for
the welder.) Figure 10 shows the assigned rating and Fig. 12 plots its histogram.
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It is seen that over 60% of the data points are rated above 8, however about 10% of
the data points have been rated below 4. If all the data points are used to model the
human welder response, the model might not reflect the correct behavior. In this
section, an ANFIS based automated welder rating system (i.e., classifier) is
synthesized.

From steady state models derived in Sect. 3.2 it is observed that each welder
adjustment has certain impact on the weld penetration and thus should be
accordingly weighted. The individual welder rating systems corresponding to each
input are defined as:

RS;k ¼ f1 Wk; Lk;Ck; Skð Þ
RA;k ¼ f2 Wk; Lk;Ck;Akð Þ
RRX;k ¼ f3 Wk; Lk;Ck;RXkð Þ
RRY ;k ¼ f4 Wk; Lk;Ck;RYkð Þ

8>><
>>: ð14Þ

where Wk; Lk;Ck represent the measured weld pool parameters at instant k.
Then both the linear and ANFIS welder rating system can be synthesized by

weighting the individual welder rating system for four inputs using the normalized
coefficients derived in Sect. 3.2:

Rk ¼ 0:764RS;k þ 0:086RA;k þ 0:11RRX;k þ 0:04RRY ;k ð15Þ

Linear model can be fitted using standard least squares method:

RS;k ¼ 0:018Wk � 0:107Lk � 0:111Ck þ 3:831Sk þ 6:17
RA;k ¼ �0:016Wk þ 0:098Lk � 1:152Ck � 0:279Ak þ 7:29
RRX;k ¼ �0:012Wk þ 0:163Lk � 1:678Ck þ 0:102RXk þ 6:83
RRY ;k ¼ �0:006Wk þ 0:009Lk � 1:149Ck þ 0:124RYk þ 7:59

8>><
>>: ð16Þ

The linear fitting result is depicted in Fig. 11. Substantial fitting errors are fre-
quently observed. The model average error and RMSE are 0.876 and 1.112,
respectively.

ANFIS modeling technique described in previous subsection is then utilized to
improve the classifier performance. Modeling trials suggest that when the four
inputs are partitioned by 2, a good trade-off between fitting errors and model
parameter numbers is obtained. ANFIS fitting result is also plotted in Fig. 12.
Compared to the linear model result, the proposed ANFIS model provides much
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Fig. 10 Human welder rating in seven dynamic training experiments
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better fitting result with the model average error and RMSE being reduced to 0.692
and 0.878, respectively.

The trained classifier will be used to classify the training experiment data (shown
in Fig. 9). Measurements (with associated ratings larger than 8) are then selected
and depicted in Fig. 13. These measurements are considered to be the “correct
response” generated by the human welder. In the next section, modeling of human
welder response is conducted and correct human welder response is distilled and
analyzed. The proposed classifier can also be used in the welder training systems to
rate welder adjustments, which may be helpful in training unskilled welder faster,
and resolve the skilled welder shortage issue in the manufacturing industry.
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Fig. 11 Human welder rating, linear and ANFIS estimated rating in seven dynamic training
experiments

0 2 4 6 8 10
0

200

400

600

800

Rating

H
is

to
gr

am
Fig. 12 Histogram of the
human welder rating specified
in Fig. 10

0 100 200 300 400 500 600 700 800

-5

0

5

Sample Number

P
oo

l P
ar

am
et

er
s

 

 

Speed*5 (mm/s) ArcLength (mm) RX (deg) RY (deg)

0 100 200 300 400 500 600 700 800
0

2

4

6

8

Sample Number

 

 

Width Length Convexity*10

Po
ol

 P
ar

am
et

er
s 

(m
m

)

Fig. 13 Selected data pairs (measurements with ratings larger than 8) from Fig. 9
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5 Data-Driven Modeling of 3-D Human Hand Movement

Based on the definition of system inputs and output detailed in previous section, a
general model structured is described as:

Sk ¼ g1ðWk�1; Lk�1;Ck�1Þ
Ak ¼ g2ðWk�1; Lk�1;Ck�1Þ
RXk ¼ g3ðWk�1; Lk�1;Ck�1Þ
RYk ¼ g4ðWk�1; Lk�1;Ck�1Þ

8>><
>>: ð17Þ

In the next two subsections, linear and ANFIS modeling are performed to cor-
relate the weld pool characteristic parameters to the welder adjustments.

5.1 Linear Modeling

The following linear models are first proposed and identified using standard least
squares algorithm:

Sk;l ¼ 0:0014Wk�1 þ 0:0278Lk�1 þ 0:2322Ck�1 þ 0:4551
Ak;l ¼ �0:0352Wk�1 þ 0:028Lk�1 þ 0:683Ck�1 � 0:123
RXk;l ¼ �0:0445Wk�1 � 0:597Lk�1 þ 6:558Ck�1 þ 3:961
RYk;l ¼ 0:0631Wk�1 þ 0:646Lk�1 þ 3:595Ck�1 � 3:592

8>><
>>: ð18Þ

The linear modeling results are plotted in Fig. 14. The average model errors and
RMSEs are listed in Table 2. It is found that the human movements can be esti-
mated by the linear model with acceptable accuracy. However, substantial static
fitting errors are frequently observed.

5.2 ANFIS Modeling

The linear model described in the first subsection accounts for the average effect of
the weld pool parameters on the welder adjustments in the large input ranges. In
order to further improve the modeling accuracy, nonlinear ANFIS modeling method
is utilized. Modeling trails suggest that when input parameters are partitioned by 2,
a good trade-off is obtained between model performance and number of model
parameters. The modeling result is shown in Fig. 14 and the resulting ANFIS
model errors are listed in Table 2. It is seen that the model errors are improved by
incorporating the nonlinear correlation between the model inputs and outputs.
Hence, the developed ANFIS modeling plays an important role in deriving the
detailed correlation between the welder’s response and the weld pool geometry.
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Figure 15 plots the histogram of the rating for data specified in Fig. 13. It is
observed that after ANFIS modeling, the overall rating is increased, with more
ratings above 8.4, and less ratings from 8 to 8.4. This indicates that the proposed
ANFIS modeling is able to distill the correct response made by the human welder.
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Fig. 14 Modeling results of human welder adjustments

Table 2 Model error
comparisons

Average model error RMSE

S (mm/s) Linear 0.121 0.152

ANFIS 0.102 0.129

A (mm) Linear 0.167 0.245

ANFIS 0.158 0.232

RX (deg) Linear 1.524 1.685

ANFIS 1.356 1.571

RY (deg) Linear 1.981 2.352

ANFIS 1.717 2.122
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5.3 Model Verification

To verify the proposed ANFIS model, verification experiment is conducted and the
results are shown in Fig. 16. It is shown in Fig. 16b that the model can estimate the
welder adjustments with acceptable accuracy. It is noticed, however, that certain
human adjustments are not learned by the models. Careful analysis indicates that
these adjustments are caused by human welder’s underestimation and overesti-
mation of the weld penetration, and thus should not be learned.
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Fig. 16 Verification experiment results: a weld pool characteristic parameters; b measured and
estimated welder adjustments
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6 Automated Welding Experiments

In order to demonstrate the robustness of the developed control system, automated
welding experiments have been designed and conducted in this section under dif-
ferent disturbances. In subsection 6.1, different welding currents are applied. In
subsection 6.2 and 6.3 the welding speed and weld pool measurement disturbances
are applied and the robustness of the controller with speed disturbance is tested.

6.1 Experiment 1: Different Welding Currents

In this subsection the control experiment is conducted under different welding
currents. From 40 s to 50 s is the open loop period where no controller is applied.
The welding speed and the welding current are set at 0.5 mm/s and 43 A, and other
adjustments are set at zeros. The pool parameters reach their steady states at the end
of the open loop period (6 mm for the width, 6 mm for the length, and 0.13 mm for
the convexity). From 50 s the proposed controller is applied, and the welding speed
is adjusted to about 0.7 mm/s based on the inputs (weld pool characteristic
parameters). Other welding parameters including the arc length and torch orienta-
tions are adjusted accordingly. It is noticed that for the same welding current (i.e.,
43 A), the weld pool parameters are fluctuating because of other un-modeled factors
that might influence the welding process. For example, from 75 s to 80 s, an
increase in the weld pool convexity is observed. Consequently, the welding speed is
increased, the arc length is slightly decreased, and the orientations are also adjusted
accordingly to compensate this change in the weld pool parameters, similar to the
adjustments that would be made by the human welders.

At 95 s, the welding current is changed to 46 A (Fig. 17a). As a result, the weld
pool width, length and convexity gradually increase to about 6.5, 7, and 0.14 mm,
respectively. From Fig. 17 d it is also observed that the back-side bead width is
increased because of this current increase. If no closed loop control is applied, this
current increase cannot be compensated. From Fig. 17b it is shown that the con-
troller is able to increase the welding speed to about 0.8 mm/s to compensate this
increase in the welding current. The back-side bead width is also well maintained at
about 2 mm.

6.2 Experiment 2: Welding Speed Disturbance

In this experiment the robustness of the control algorithm against welding speed
disturbance is evaluated. Thewelding current is set at 43A throughout the experiment.
An artificial error between the calculated and applied values of the welding speed is
applied. In the first 35 s of the closed loop control (60 s–95 s), no error exists between
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the calculated speed and applied speed. The controller is able to bring the back-side
bead width to about 2.1 mm. From 95 s to 97 s, the welding speed is set at 0.5 mm/s.
As the result, the back-side bead width increases to about 2.5 mm (see Fig. 18d).
However, the controller is able to adjust thewelding speed to compensate this artificial
error (see Fig. 18c), and the back-side bead width can be maintained around 2.1 mm
again (see Fig. 18d) with a relatively quick response time.

6.3 Experiment 3: Measurement Disturbance

An artificial error between the actual and measured values of the weld pool surface
is applied in this experiment. At 113 s, the measured weld pool width, length, and
convexity are set to 3, 3.5, and 0.05 mm, respectively. As can be seen from Fig. 19b
the welding speed is slightly decreased from 0.8 mm/s to about 0.76 mm/s, and
the back-side bead width is slightly increased (Fig. 19d). Other welding parameters
are also adjusted by the controller accordingly. By applying the controller, the
desired back-side bead width is well maintained at about 2.1 mm. The robustness of
the proposed intelligent controller is thus demonstrated.
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Fig. 17 Experiment 1 results: a welding current and weld pool parameters; b control inputs;
c front-side bead; d back-side bead
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Fig. 18 Experiment 2 results: a welding current and weld pool parameters; b control inputs;
c front-side bead; d back-side bead
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Fig. 19 Experiment 3 results: a welding current and weld pool parameters; b control inputs;
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7 Conclusion

In this paper a data-driven approach to model human welder intelligence in 3-D is
proposed. A virtualized welding platform is utilized to conduct teleoperated training
experiments. Human welder’s arm gestures (including movement speed, arc length,
and torch orientations) together with the 3-D weld pool characteristic parameters
are recorded and analyzed. The data is off-line rated by the welder and an automated
welder rating system is obtained by synthesizing individual rating system corre-
sponding to each welder adjustment using weights from their steady state models.
Data from the training experiments are then selected and ANFIS models are pro-
posed to correlate the 3-D weld pool characteristic parameters and welder’s
movement adjustments. To demonstrate the effectiveness of the proposed
data-driven model, automated control experiments are conducted. Results show that
the proposed model as an intelligent controller is able to control the welding process
under different welding currents, and is robust against welding speed and mea-
surement disturbances. A foundation is thus established to rapidly extract human
intelligence and transfer such intelligence into welding robots.

Future work includes achieving more accurate tracking performance of the torch
movement, as well as detailed analysis of the interactions and coupling between
welding speed and torch orientations. Other interesting applications can also be
explored, such as speeding up the welder training process. The response models
learned from unskilled welders being trained can be compared with those from
skilled welders to further understand their differences.
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